11 research outputs found

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes

    Sequence specific peptidomimetic molecules inhibitors of a protein-protein interaction at the helix 1 level of c-Myc

    No full text
    Our work is focused in the broad area of strategies and efforts to inhibit protein-protein interactions. The possible strategies in this field are definitely much more varied than in the case of ATP-pocket inhibitors. In our previous work (10), we reported that a retro-inverso (RI) form of Helix1 (H1) of c-Myc, linked to an RI-internalization sequence arising from the third alpha-helix of Antennapedia (Int) was endowed with an antiproliferative and proapoptotic activity toward the cancer cell lines MCF-7 and HCT-116. The activity apparently was dependent upon the presence of the Myc motif. In this work, by ala-scan mapping of the H1 portion of our molecules with D-aa, we found two amino acids necessary for antiproliferative activity: D-Lys in 4 and D-Arg in 5 (numbers refer to L-forms). In the natural hetero-dimer, these two side chains project to the outside of the four alpha-helix bundle. Moreover, we were able to obtain three peptides more active than the original lead. They strongly reduced cell proliferation and survival (RI-Int-VV-H1-E2A,S6A,F8A; RI-Int-VV-H1-S6A,F8A,R11A; RI-Int-VV-H1-S6A,F8A,Q13A): after 8 days at 10 muM total cell number was approximately 1% of the number of cells initially seeded. In these more potent molecules, the ablated side chains project to the inside in the corresponding natural four alpha-helix bundle. In the present work, we also investigated the behavior of our molecules at the biochemical level. Using both a circular dichroism (CD) and a fluorescence anisotropy approach, we noted that side chains projecting at the interior of the four alpha-helix bundle are needed for inducing the partial unfolding of Myc-H2, without an opening of the leucine zipper. Side chains projecting at the outside are not required for this biochemical effect. However, antiproliferative activity had the opposite requirements: side chains projecting at the outside of the bundle were essential, and, on the contrary, ablation of one side chain at a time projecting at the inside increased rather than decreased biological activity. We conclude that our active molecules probably interfere at the level of a protein-protein interaction between Myc-Max and a third protein of the transcription complex. Finally, CD and nuclear magnetic resonance (NMR) data, plus dynamic simulations, suggest a prevalent random coil conformation of the H1 portion of our molecules, at least in diluted solutions. The introduction of a kink (substitution with proline in positions 5 or 7) led to an important reduction of biological activity. We have also synthesized a longer peptido-mimetic molecule (RI-Int-H1-S6A,F8A-loop-H2) with the intent of obtaining a wider zone of interaction and a stronger interference at the level of the higher-order structure (enhanceosome). RI-Int-H1-S6A,F8A-loop-H2 was less active rather than more active in respect to RI-Int-VV-H1-S6A,F8A, apparently because it has a clear bent to form a beta-sheet (CD and NMR data)
    corecore