9,099 research outputs found

    Large Area Crop Inventory Experiment (LACIE). Level 3 baseline; LACIE commodity data control plan for JSC

    Get PDF
    There are no author-identified significant results in this report

    An sl(2, R) current algebra from AdS_3 gravity

    Get PDF
    We provide a set of chiral boundary conditions for three-dimensional gravity that allow for asymptotic symmetries identical to those of two-dimensional induced gravity in light-cone gauge considered by Polyakov. These are the most general boundary conditions consistent with the boundary terms introduced by Compere, Song and Strominger recently. We show that the asymptotic symmetry algebra of our boundary conditions is an sl(2,R) current algebra with level given by c/6. The fully non-linear solution in Fefferman--Graham coordinates is also provided along with its charges.Comment: 8 page

    Development of a high capacity toroidal Ni/Cd cell

    Get PDF
    A nickel cadmium battery design which can offer better thermal management, higher energy density and much lower cost than the state-of-the-art is emphasized. A toroidal Ni/Cd cell concept is described. It was critically reviewed and used to develop two cell designs for practical implementation. One is a double swaged and the other a swaged welded configuration

    Hyperspherical harmonics with arbitrary arguments

    Full text link
    The derivation scheme for hyperspherical harmonics (HSH) with arbitrary arguments is proposed. It is demonstrated that HSH can be presented as the product of HSH corresponding to spaces with lower dimensionality multiplied by the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to quantum few-body problems is discussed. The explicit expressions for orthonormal HSH in spaces with dimensions from 2 to 6 are given. The important particular cases of four- and six-dimensional spaces are analyzed in detail and explicit expressions for HSH are given for several choices of hyperangles. In the six-dimensional space, HSH representing the kinetic energy operator corresponding to i) the three-body problem in physical space and ii) four-body planar problem are derived.Comment: 18 pages, 1 figur

    Mitochondrial ferredoxin determines vulnerability of cells to copper excess

    Get PDF
    The essential micronutrient copper is tightly regulated in organisms, as environmental exposure or homeostasis defects can cause toxicity and neurodegenerative disease. The principal target(s) of copper toxicity have not been pinpointed, but one key effect is impaired supply of iron-sulphur (FeS) clusters to the essential protein Rli1 (ABCE1). Here, to find upstream FeS-biosynthesis/delivery protein(s) responsible for this, we compared copper sensitivity of yeast overexpressing candidate targets. Overexpression of the mitochondrial ferredoxin Yah1 produced copper hyper-resistance. 55Fe turnover assays revealed that FeS1-integrity of Yah1 was particularly vulnerable to copper among the test proteins. Furthermore, destabilization of the FeS domain of Yah1 produced copper hypersensitivity, and YAH1 overexpression rescued Rli1 dysfunction. This copper-resistance function was conserved in the human ferredoxin, Fdx2. The data indicate that the essential mitochondrial ferredoxin is an important copper target, determining a tipping point where plentiful copper supply becomes excess. This knowledge could help in tackling copper-related diseases

    Tandem concentrator solar cells with 30 percent (AMO) power conversion efficiency

    Get PDF
    Very high efficiency concentrator solar panels are envisioned as economical and reliable electrical power subsystems for space based platforms of the future. GaAs concentrator cells with very high efficiencies and good sub-bandgap transmissions can be fabricated on standard wafers. GaSb booster cell development is progressing very well; performance characteristics are still improving dramatically. Consistent GaAs/GaSb stacked cell AMO efficiencies greater than 30 percent are expected

    Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    Get PDF
    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg

    Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    Get PDF
    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites

    Intertwining Relations for the Deformed D1D5 CFT

    Full text link
    The Higgs branch of the D1D5 system flows in the infrared to a two-dimensional N=(4,4) SCFT. This system is believed to have an "orbifold point" in its moduli space where the SCFT is a free sigma model with target space the symmetric product of copies of four-tori; however, at the orbifold point gravity is strongly coupled and to reach the supergravity point one needs to turn on the four exactly marginal deformations corresponding to the blow-up modes of the orbifold SCFT. Recently, technology has been developed for studying these deformations and perturbing the D1D5 CFT off its orbifold point. We present a new method for computing the general effect of a single application of the deformation operators. The method takes the form of intertwining relations that map operators in the untwisted sector before application of the deformation operator to operators in the 2-twisted sector after the application of the deformation operator. This method is computationally more direct, and may be of theoretical interest. This line of inquiry should ultimately have relevance for black hole physics.Comment: latex, 23 pages, 3 figure

    Dynamical properties of ultracold bosons in an optical lattice

    Full text link
    We study the excitation spectrum of strongly correlated lattice bosons for the Mott-insulating phase and for the superfluid phase close to localization. Within a Schwinger-boson mean-field approach we find two gapped modes in the Mott insulator and the combination of a sound mode (Goldstone) and a gapped (Higgs) mode in the superfluid. To make our findings comparable with experimental results, we calculate the dynamic structure factor as well as the linear response to the optical lattice modulation introduced by Stoeferle et al. [Phys. Rev. Lett. 92, 130403 (2004)]. We find that the puzzling finite frequency absorption observed in the superfluid phase could be explained via the excitation of the gapped (Higgs) mode. We check the consistency of our results with an adapted f-sum-rule and propose an extension of the experimental technique by Stoeferle et al. to further verify our findings.Comment: 13 pages, 5 figure
    corecore