3,698 research outputs found

    Measurement of the nuclear modification factor of electrons from heavy-flavour decays at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV with ALICE

    Full text link
    We present results on inclusive electrons for 1.5 <pT< < p_{\rm T} < 6 GeV/cc in {Pb-Pb} collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV measured with ALICE at the LHC and compare these to a cocktail of background electron sources. The excess of electrons beyond the cocktail at high momenta ({pT>p_{\rm T} > 3.5 GeV/cc}) is attributed to electrons from heavy-flavour decays. The corresponding nuclear modification factor indicates heavy-flavour suppression by a factor of 1.5-4.Comment: 4 pages; 4 figures; QM 2011 proceeding

    Sequence learning under uncertainty in children: self-reflection vs. self-assertion

    Get PDF
    We know that stochastic feedback impairs children's associative stimulus-response (S-R) learning (Crone et al., 2004a; Eppinger et al., 2009), but the impact of stochastic feedback on sequence learning that involves deductive reasoning has not been not tested so far. In the current study, 8- to 11-year-old children (N = 171) learned a sequence of four left and right button presses, LLRR, RRLL, LRLR, RLRL, LRRL, and RLLR, which needed to be deduced from feedback because no directional cues were given. One group of children experienced consistent feedback only (deterministic feedback, 100% correct). In this condition, green feedback on the screen indicated that the children had been right when they were right, and red feedback indicated that the children had been wrong when they were wrong. Another group of children experienced inconsistent feedback (stochastic feedback, 85% correct, 15% false), where in some trials, green feedback on the screen could signal that children were right when in fact they were wrong, and red feedback could indicate that they were wrong when in fact they had been right. Independently of age, children's sequence learning in the stochastic condition was initially much lower than in the deterministic condition, but increased gradually and improved with practice. Responses toward positive vs. negative feedback varied with age. Children were increasingly able to understand that they could have been wrong when feedback indicated they were right (self-reflection), but they remained unable to understand that they could have been right when feedback indicated they were wrong (self-assertion)

    A study of white etching crack formation by compression-torsion experiments

    Get PDF
    In this study, an attempt was made to recreate the bearing damage phenomenon ā€œWhite Etching Cracksā€ with a simplified testing setup. Rolling contact fatigue conditions were simulated with in-phase and out-ofphase cyclic compression-torsion experiments on 100Cr6 steel specimens. The results are compared in terms of microstructural change. Focused Ion Beam and metallographic analysis reveal that a fine-grained, white etching zone formed in the vicinity of the fatigue cracks of specimens tested with the in-phase load pattern. In contrast, no such structures were found after testing the out-of-phase load pattern. The properties of the white etching zone are characterised in more detail and compared with White Etching Cracks. KEYWORDS. White Etching Cracks; Multiaxial fatigue; Bearing steel

    Reinforcement learning in populations of spiking neurons

    Get PDF
    Population coding is widely regarded as a key mechanism for achieving reliable behavioral responses in the face of neuronal variability. But in standard reinforcement learning a flip-side becomes apparent. Learning slows down with increasing population size since the global reinforcement becomes less and less related to the performance of any single neuron. We show that, in contrast, learning speeds up with increasing population size if feedback about the populationresponse modulates synaptic plasticity in addition to global reinforcement. The two feedback signals (reinforcement and population-response signal) can be encoded by ambient neurotransmitter concentrations which vary slowly, yielding a fully online plasticity rule where the learning of a stimulus is interleaved with the processing of the subsequent one. The assumption of a single additional feedback mechanism therefore reconciles biological plausibility with efficient learning

    Stimulating learning: A functional MRI and behavioral investigation of the effects of transcranial direct current stimulation on stochastic learning in schizophrenia

    Get PDF
    Transcranial direct current stimulation (tDCS) of the medial prefrontal cortex (mPFC) is under clinical investigation as a treatment for cognitive deficits. We investigate the effects of tDCS over the mPFC on performance SSLT in individuals with schizophrenia, and the underlying neurophysiological effect in regions associated with learning values and stimulus-outcome relationships. In this parallel-design double-blind pilot study, 49 individuals with schizophrenia, of whom 28 completed a fMRI, were randomized into active or sham tDCS stimulation groups. Subjects participated in 4 days of SSLT training (days 1, 2, 14, 56) with tDCS applied at day-1, and during a concurrent MRI scan at day-14. The SSLT demonstrated a significant mean difference in performance in the tDCS treatment group: at day-2 and at day-56. Active tDCS was associated with increased insular activity, and reduced amygdala activation. tDCS may offer an important novel approach to modulating brain networks to ameliorate cognitive deficits in schizophrenia, with this study being the first to show a longer-term effect on SSLT

    Investigation of charm and beauty production via semileptonic decays of heavy-flavour hadrons in pp at 7 TeV and Pb--Pb at 2.76 TeV with ALICE

    Full text link
    Electron spectra measured with ALICE at mid-rapidity are used to study the production of hadrons carrying a charm or a beauty quark. The production cross section of electrons from heavy-flavour hadron decays is measured in pp collisions at s\sqrt{s}=7 TeV. Electrons from the beauty decays are identified via the displacement from the interaction vertex. From the electron spectra measured in Pb--Pb collisions, we determine the nuclear modification factor, which is sensitive to the heavy-quark energy loss in a hot strongly interacting medium.Comment: Quark Matter 2011 proceeding

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure
    • ā€¦
    corecore