3,068 research outputs found

    Sequence learning under uncertainty in children: self-reflection vs. self-assertion

    Get PDF
    We know that stochastic feedback impairs children's associative stimulus-response (S-R) learning (Crone et al., 2004a; Eppinger et al., 2009), but the impact of stochastic feedback on sequence learning that involves deductive reasoning has not been not tested so far. In the current study, 8- to 11-year-old children (N = 171) learned a sequence of four left and right button presses, LLRR, RRLL, LRLR, RLRL, LRRL, and RLLR, which needed to be deduced from feedback because no directional cues were given. One group of children experienced consistent feedback only (deterministic feedback, 100% correct). In this condition, green feedback on the screen indicated that the children had been right when they were right, and red feedback indicated that the children had been wrong when they were wrong. Another group of children experienced inconsistent feedback (stochastic feedback, 85% correct, 15% false), where in some trials, green feedback on the screen could signal that children were right when in fact they were wrong, and red feedback could indicate that they were wrong when in fact they had been right. Independently of age, children's sequence learning in the stochastic condition was initially much lower than in the deterministic condition, but increased gradually and improved with practice. Responses toward positive vs. negative feedback varied with age. Children were increasingly able to understand that they could have been wrong when feedback indicated they were right (self-reflection), but they remained unable to understand that they could have been right when feedback indicated they were wrong (self-assertion)

    Heavy-flavour production in Pb-Pb collisions at the LHC, measured with the ALICE detector

    Full text link
    We present the first results from the ALICE experiment on the nuclear modification factors for heavy-flavour hadron production in Pb-Pb collisions at sqrt{s_NN}=2.76 TeV. Using proton-proton and lead-lead collision samples at sqrt{s}=7 TeV and sqrt{s_NN}=2.76 TeV, respectively, nuclear modification factors R_AA(pt) were measured for D mesons at central rapidity (via displaced decay vertex reconstruction), and for electrons and muons, at central and forward rapidity, respectively.Comment: 8 pages, 5 figures, plenary talk at Quark Matter 2011, Annecy, Franc

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure

    Stimulus-dependent maximum entropy models of neural population codes

    Get PDF
    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. To be able to infer a model for this distribution from large-scale neural recordings, we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. The model is able to capture the single-cell response properties as well as the correlations in neural spiking due to shared stimulus and due to effective neuron-to-neuron connections. Here we show that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. As a result, the SDME model gives a more accurate account of single cell responses and in particular outperforms uncoupled models in reproducing the distributions of codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like surprise and information transmission in a neural population.Comment: 11 pages, 7 figure

    Identification of baryon resonances in central heavy-ion collisions at energies between 1 and 2 AGeV

    Get PDF
    The mass distributions of baryon resonances populated in near-central collisions of Au on Au and Ni on Ni are deduced by defolding the ptp_t spectra of charged pions by a method which does not depend on a specific resonance shape. In addition the mass distributions of resonances are obtained from the invariant masses of (p,π±)(p, \pi^{\pm}) pairs. With both methods the deduced mass distributions are shifted by an average value of -60 MeV/c2^2 relative to the mass distribution of the free Δ(1232)\Delta(1232) resonance, the distributions descent almost exponentially towards mass values of 2000 MeV/c^2. The observed differences between (p,π)(p, \pi^-) and (p,π+)(p, \pi^+) pairs indicate a contribution of isospin I=1/2I = 1/2 resonances. The attempt to consistently describe the deduced mass distributions and the reconstructed kinetic energy spectra of the resonances leads to new insights about the freeze out conditions, i.e. to rather low temperatures and large expansion velocities.Comment: 30 pages, 13 figures, Latex using documentstyle[12pt,a4,epsfig], to appear in Eur. Phys. J.

    Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation

    Full text link
    We report on the uptake, toxicity and degradation of magnetic nanowires by NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron microscopy, we show that after 24 h incubation the wires are internalized by the cells and located either in membrane-bound compartments or dispersed in the cytosol. Using fluorescence microscopy, the membrane-bound compartments were identified as late endosomal/lysosomal endosomes labeled with lysosomal associated membrane protein (Lamp1). Toxicity assays evaluating the mitochondrial activity, cell proliferation and production of reactive oxygen species show that the wires do not display acute short-term (< 100 h) toxicity towards the cells. Interestingly, the cells are able to degrade the wires and to transform them into smaller aggregates, even in short time periods (days). This degradation is likely to occur as a consequence of the internal structure of the wires, which is that of a non-covalently bound aggregate. We anticipate that this degradation should prevent long-term asbestos-like toxicity effects related to high aspect ratio morphologies and that these wires represent a promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure

    Strange meson production in Al+Al collisions at 1.9A GeV

    Full text link
    The production of K+^+, K^- and φ\varphi(1020) mesons is studied in Al+Al collisions at a beam energy of 1.9A GeV which is close or below the production threshold in NN reactions. Inverse slopes, anisotropy parameters, and total emission yields of K±^{\pm} mesons are obtained. A comparison of the ratio of kinetic energy distributions of K^- and K+^+ mesons to the HSD transport model calculations suggests that the inclusion of the in-medium modifications of kaon properties is necessary to reproduce the ratio. The inverse slope and total yield of ϕ\phi mesons are deduced. The contribution to K^- production from ϕ\phi meson decays is found to be [17 ±\pm 3 (stat) 7+2^{+2}_{-7} (syst)] %. The results are in line with previous K±^{\pm} and ϕ\phi data obtained for different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure
    corecore