11 research outputs found

    Integrating an electrokinetic actuation method on a plasmonic biosensor

    No full text
    Cette thĂšse porte sur le dĂ©veloppement d’un capteur plasmonique intĂ©grant une fonction d’actuation des objets visĂ©s. L’objectif est de passer outre la limite de diffusion rencontrĂ©e Ă  basse concentration en piĂ©geant les particules sur la surface de dĂ©tection. La stratĂ©gie adoptĂ©e est de structurer le film d’or servant Ă  la dĂ©tection de maniĂšre Ă  pouvoir l’utiliser pour mettre en mouvement le fluide et les molĂ©cules par le biais de champs Ă©lectriques. Le transfert de masse est rĂ©alisĂ© par diĂ©lectrophorĂšse et Ă©lectroosmose, deux effets Ă©lectrocinĂ©tiques mis en oeuvre par des Ă©lectrodes servant Ă  la fois d’actuateur et de capteur plasmonique. Un Ă©tat de l’art exhaustif et des simulations multiphysiques ont permis de concevoir un prototype de capteur intĂ©grĂ© constituĂ© d’électrodes interdigitĂ©es en or permettant la dĂ©tection plasmonique. Le dispositif proposĂ© a Ă©tĂ© obtenu par microfabrication en salle blanche puis caractĂ©risĂ© avant l’étude de ses performances. Une premiĂšre phase de tests sur un systĂšme modĂšle, des billes de polystyrĂšne dans de l’eau, a permis d’apporter la preuve de concept du fonctionnement du capteur, qui est effectivement capable de piĂ©ger rapidement les objets visĂ©s Ă  sa surface afin de les dĂ©tecter. Les mĂ©canismes de transfert de masse ont Ă©tĂ© expliquĂ©s et la preuve de l’amĂ©lioration de la limite de dĂ©tection par un facteur supĂ©rieur Ă  100 a Ă©tĂ© apportĂ©e. Dans un second temps, les performances du capteur appliquĂ© Ă  des objets biologiques ont Ă©tĂ© Ă©valuĂ©es. Celui-ci piĂšge efficacement des levures et des protĂ©ines, mais aucune amĂ©lioration n’a Ă©tĂ© observĂ©e dans le cas de la dĂ©tection spĂ©cifique de l’hybridation entre deux brins d’acide dĂ©soxyribonuclĂ©ique (ADN). Les causes de ce rĂ©sultat ont Ă©tĂ© discutĂ©es et comprises et deux solutions diffĂ©rentes ont Ă©tĂ© explorĂ©es : l’adaptation de la frĂ©quence d’opĂ©ration et l’optimisation de la gĂ©omĂ©trie des Ă©lectrodes. Ainsi, cette Ă©tude a permis de souligner la problĂ©matique de la mise en oeuvre d’effets Ă©lectrocinĂ©tiques dans des milieux biologiques et de rĂ©flĂ©chir aux pistes pertinentes pour sa rĂ©solution.Abstract: This thesis focuses on the development of an integrated plasmonic sensor capable to perform mass transport on targeted objects. The goal is to overcome the diffusion limit by trapping particules directly on the sensing surface. The adopted strategy was to structure the gold layer used for plasmonic detection in order to use the sofabricated structures to set the fluid and the molecules in motion by applying electric fields in the fluid. The mass transfer is realized through dielectrophoresis and electroosmosis, those two electrokinetic effects being operated by electrodes acting as sensor and actuator at the same time. An exhaustive state of the art as well as multiphysical simulations allowed us for designing a prototype for an integrated sensor consisting in gold interdigitated electrodes enabling plasmoninc sensing. The proposed device was obtained through microfabrication in clean room facilities and was characterized before the study of its performances. A first sequence of tests on a model system – polystyrene microbeads in water – brought the proof of concept we needed to validate the correct operation of the sensor, which is indeed capable of quickly trapping targeted objects on its surface and detecting them. The mass transfer mechanisms were explained and we showed the enhancement of the limit of detection by a factor greater than 100. In a second phase, performances of the sensor applied to biological objects were evaluated. It can effectively trap yeasts and proteins but no enhancement has been observed while detecting DNA hybridization events. Causes for this result were discussed and understood and two different solutions were explored: the adaptation of the operating frequency and the optimization of the electrodes geometry. Thus, this study highlighted the problematic of operating electrokinetic effects in biological media and suggested relevant leads towards its resolution

    IntĂ©gration d’une mĂ©thode d’actuation Ă©lectrocinĂ©tique sur biocapteur plasmonique

    Get PDF
    This thesis focuses on the development of an integrated plasmonic sensor capable to perform mass transport on targeted objects. The goal is to overcome the diffusion limit by trapping particules directly on the sensing surface. The adopted strategy was to structure the gold layer used for plasmonic detection in order to use the sofabricated structures to set the fluid and the molecules in motion by applying electric fields in the fluid. The mass transfer is realized through dielectrophoresis and electroosmosis, those two electrokinetic effects being operated by electrodes acting as sensor and actuator at the same time. An exhaustive state of the art as well as multiphysical simulations allowed us for designing a prototype for an integrated sensor consisting in gold interdigitated electrodes enabling plasmoninc sensing. The proposed device was obtained through microfabrication in clean room facilities and was characterized before the study of its performances. A first sequence of tests on a model system – polystyrene microbeads in water – brought the proof of concept we needed to validate the correct operation of the sensor, which is indeed capable of quickly trapping targeted objects on its surface and detecting them. The mass transfer mechanisms were explained and we showed the enhancement of the limit of detection by a factor greater than 100. In a second phase, performances of the sensor applied to biological objects were evaluated. It can effectively trap yeasts and proteins but no enhancement has been observed while detecting DNA hybridization events. Causes for this result were discussed and understood and two different solutions were explored: the adaptation of the operating frequency and the optimization of the electrodes geometry. Thus, this study highlighted the problematic of operating electrokinetic effects in biological media and suggested relevant leads towards its resolution.Cette thĂšse porte sur le dĂ©veloppement d’un capteur plasmonique intĂ©grant une fonction d’actuation des objets visĂ©s. L’objectif est de passer outre la limite de diffusion rencontrĂ©e Ă  basse concentration en piĂ©geant les particules sur la surface de dĂ©tection. La stratĂ©gie adoptĂ©e est de structurer le film d’or servant Ă  la dĂ©tection de maniĂšre Ă  pouvoir l’utiliser pour mettre en mouvement le fluide et les molĂ©cules par le biais de champs Ă©lectriques. Le transfert de masse est rĂ©alisĂ© par diĂ©lectrophorĂšse et Ă©lectroosmose, deux effets Ă©lectrocinĂ©tiques mis en oeuvre par des Ă©lectrodes servant Ă  la fois d’actuateur et de capteur plasmonique. Un Ă©tat de l’art exhaustif et des simulations multiphysiques ont permis de concevoir un prototype de capteur intĂ©grĂ© constituĂ© d’électrodes interdigitĂ©es en or permettant la dĂ©tection plasmonique. Le dispositif proposĂ© a Ă©tĂ© obtenu par microfabrication en salle blanche puis caractĂ©risĂ© avant l’étude de ses performances. Une premiĂšre phase de tests sur un systĂšme modĂšle, des billes de polystyrĂšne dans de l’eau, a permis d’apporter la preuve de concept du fonctionnement du capteur, qui est effectivement capable de piĂ©ger rapidement les objets visĂ©s Ă  sa surface afin de les dĂ©tecter. Les mĂ©canismes de transfert de masse ont Ă©tĂ© expliquĂ©s et la preuve de l’amĂ©lioration de la limite de dĂ©tection par un facteur supĂ©rieur Ă  100 a Ă©tĂ© apportĂ©e. Dans un second temps, les performances du capteur appliquĂ© Ă  des objets biologiques ont Ă©tĂ© Ă©valuĂ©es. Celui-ci piĂšge efficacement des levures et des protĂ©ines, mais aucune amĂ©lioration n’a Ă©tĂ© observĂ©e dans le cas de la dĂ©tection spĂ©cifique de l’hybridation entre deux brins d’acide dĂ©soxyribonuclĂ©ique (ADN). Les causes de ce rĂ©sultat ont Ă©tĂ© discutĂ©es et comprises et deux solutions diffĂ©rentes ont Ă©tĂ© explorĂ©es : l’adaptation de la frĂ©quence d’opĂ©ration et l’optimisation de la gĂ©omĂ©trie des Ă©lectrodes. Ainsi, cette Ă©tude a permis de souligner la problĂ©matique de la mise en oeuvre d’effets Ă©lectrocinĂ©tiques dans des milieux biologiques et de rĂ©flĂ©chir aux pistes pertinentes pour sa rĂ©solution

    Integrating an electrokinetic actuation method on a plasmonic biosensor

    No full text
    Cette thĂšse porte sur le dĂ©veloppement d’un capteur plasmonique intĂ©grant une fonction d’actuation des objets visĂ©s. L’objectif est de passer outre la limite de diffusion rencontrĂ©e Ă  basse concentration en piĂ©geant les particules sur la surface de dĂ©tection. La stratĂ©gie adoptĂ©e est de structurer le film d’or servant Ă  la dĂ©tection de maniĂšre Ă  pouvoir l’utiliser pour mettre en mouvement le fluide et les molĂ©cules par le biais de champs Ă©lectriques. Le transfert de masse est rĂ©alisĂ© par diĂ©lectrophorĂšse et Ă©lectroosmose, deux effets Ă©lectrocinĂ©tiques mis en oeuvre par des Ă©lectrodes servant Ă  la fois d’actuateur et de capteur plasmonique. Un Ă©tat de l’art exhaustif et des simulations multiphysiques ont permis de concevoir un prototype de capteur intĂ©grĂ© constituĂ© d’électrodes interdigitĂ©es en or permettant la dĂ©tection plasmonique. Le dispositif proposĂ© a Ă©tĂ© obtenu par microfabrication en salle blanche puis caractĂ©risĂ© avant l’étude de ses performances. Une premiĂšre phase de tests sur un systĂšme modĂšle, des billes de polystyrĂšne dans de l’eau, a permis d’apporter la preuve de concept du fonctionnement du capteur, qui est effectivement capable de piĂ©ger rapidement les objets visĂ©s Ă  sa surface afin de les dĂ©tecter. Les mĂ©canismes de transfert de masse ont Ă©tĂ© expliquĂ©s et la preuve de l’amĂ©lioration de la limite de dĂ©tection par un facteur supĂ©rieur Ă  100 a Ă©tĂ© apportĂ©e. Dans un second temps, les performances du capteur appliquĂ© Ă  des objets biologiques ont Ă©tĂ© Ă©valuĂ©es. Celui-ci piĂšge efficacement des levures et des protĂ©ines, mais aucune amĂ©lioration n’a Ă©tĂ© observĂ©e dans le cas de la dĂ©tection spĂ©cifique de l’hybridation entre deux brins d’acide dĂ©soxyribonuclĂ©ique (ADN). Les causes de ce rĂ©sultat ont Ă©tĂ© discutĂ©es et comprises et deux solutions diffĂ©rentes ont Ă©tĂ© explorĂ©es : l’adaptation de la frĂ©quence d’opĂ©ration et l’optimisation de la gĂ©omĂ©trie des Ă©lectrodes. Ainsi, cette Ă©tude a permis de souligner la problĂ©matique de la mise en oeuvre d’effets Ă©lectrocinĂ©tiques dans des milieux biologiques et de rĂ©flĂ©chir aux pistes pertinentes pour sa rĂ©solution.Abstract: This thesis focuses on the development of an integrated plasmonic sensor capable to perform mass transport on targeted objects. The goal is to overcome the diffusion limit by trapping particules directly on the sensing surface. The adopted strategy was to structure the gold layer used for plasmonic detection in order to use the sofabricated structures to set the fluid and the molecules in motion by applying electric fields in the fluid. The mass transfer is realized through dielectrophoresis and electroosmosis, those two electrokinetic effects being operated by electrodes acting as sensor and actuator at the same time. An exhaustive state of the art as well as multiphysical simulations allowed us for designing a prototype for an integrated sensor consisting in gold interdigitated electrodes enabling plasmoninc sensing. The proposed device was obtained through microfabrication in clean room facilities and was characterized before the study of its performances. A first sequence of tests on a model system – polystyrene microbeads in water – brought the proof of concept we needed to validate the correct operation of the sensor, which is indeed capable of quickly trapping targeted objects on its surface and detecting them. The mass transfer mechanisms were explained and we showed the enhancement of the limit of detection by a factor greater than 100. In a second phase, performances of the sensor applied to biological objects were evaluated. It can effectively trap yeasts and proteins but no enhancement has been observed while detecting DNA hybridization events. Causes for this result were discussed and understood and two different solutions were explored: the adaptation of the operating frequency and the optimization of the electrodes geometry. Thus, this study highlighted the problematic of operating electrokinetic effects in biological media and suggested relevant leads towards its resolution

    Towards Improved Datacenter Assessment: Review and Framework Proposition

    No full text
    Our growing needs for social networks, cloud storage and more recently machine learning have fueled the increasing demand for datacenters (DC). It is estimated that by 2030, in the US alone, datacenter power consumption could more than double from 2022 [1]. In Europe, the energy consumption is expected to rise by 28%, from 77TWh to 99TWh [2]. This surge, coupled with the increasing scrutiny imposed on Information and Communication Technology (ICT) from stakeholders, regulators and competition, regarding environmental impacts, and to stay on the path of net-zero, has spotlighted datacenters as key contributors to these environmental concerns. Consequently, companies have set major milestones for the next decades in terms of renewables, energy consumption and water use. This paper aims to shed light on the imperative necessity of revisiting and evaluating various metrics and methodologies used to gauge the impact of datacenters, extending beyond merely assessing sustainability factors. More in detail, we focus on four paramount criteria which encompass the whole datacenter lifecycle and its direct and indirect impacts: environmental impact, economic performance, ecosystem integration and external influence. These are usually evaluated through three types of analysis: single indicators, lifecycle analysis and multi-criteria assessment, all of which are analyzed here

    Dielectrophoretic cell trapping for improved surface plasmon resonance imaging sensing

    No full text
    International audienceThe performance of conventional surface plasmon resonance (SPR) biosensors can be limited by the diffusion of the target analyte to the sensor surface. This work presents an SPR biosensor that incorporates an active mass‐transport mechanism based on dielectrophoresis and electroosmotic flow to enhance analyte transport to the sensor surface and reduce the time required for detection. Both these phenomena rely on the generation of AC electric fields that can be tailored by shaping the electrodes that also serve as the SPR sensing areas. Numerical simulations of electric field distribution and microparticle trajectories were performed to choose an optimal electrode design. The proposed design improves on previous work combining SPR with DEP by using face‐to‐face electrodes, rather than a planar interdigitated design. Two different top‐bottom electrode designs were experimentally tested to concentrate firstly latex beads and secondly biological cells onto the SPR sensing area. SPR measurements were then performed by varying the target concentrations. The electrohydrodynamic flow enabled efficient concentration of small objects (3 ÎŒm beads, yeasts) onto the SPR sensing area, which resulted in an order of magnitude increased SPR response. Negative dielectrophoresis was also used to concentrate HEK293 cells onto the metal electrodes surrounded by insulating areas, where the SPR response was improved by one order of magnitude
    corecore