4,270 research outputs found

    The charge and spin sectors of the tt-tt' Hubbard model

    Full text link
    The charge and spin sectors, which are intimately coupled to the fermionic one, of the tt-tt' Hubbard model have been computed self-consistently within the two-pole approximation. The relevant unknown correlators appearing in the causal bosonic propagators have been computed by enforcing the constraints dictated by the hydrodynamics and the algebra of the composite operators coming into play. The proposed scheme of approximation extends previous calculations made for the fermionic sector of the tt-tt' Hubbard model and the bosonic sector of the Hubbard model, which showed to be very effective to describe the overdoped region of cuprates (the former) and the magnetic response of their parent compounds (the latter)

    The Hubbard model: bosonic excitations and zero-frequency constants

    Full text link
    A fully self-consistent calculation of the bosonic dynamics of the Hubbard model is developed within the Composite Operator Method. From one side we consider a basic set of fermionic composite operators (Hubbard fields) and calculate the retarded propagators. On the other side we consider a basic set of bosonic composite operators (charge, spin and pair) and calculate the causal propagators. The equations for the Green's functions (GF) (retarded and causal), studied in the polar approximation, are coupled and depend on a set of parameters not determined by the dynamics. First, the pair sector is self-consistently solved together with the fermionic one and the zero-frequency constants (ZFC) are calculated not assuming the ergodic value, but fixing the representation of the GF in such a way to maintain the constrains required by the algebra of the composite fields. Then, the scheme to compute the charge and spin sectors, ZFCs included, is given in terms of the fermionic and pair correlators

    New Comparisons for Local Quantities of the Two-Dimensional Hubbard Model

    Full text link
    We have compared the results of our approximation scheme, the composite operator method, for the double occupancy and the internal energy of the two-dimensional Hubbard model with numerical data obtained by means of the Lanczos and quantum Monte Carlo schemes. The agreement is very good at both half-filling and away from it showing how reliable is the approximation scheme.Comment: 6 pages, 3 figure

    Composite Operator Method analysis of the underdoped cuprates puzzle

    Get PDF
    The microscopical analysis of the unconventional and puzzling physics of the underdoped cuprates, as carried out lately by means of the Composite Operator Method (COM) applied to the 2D Hubbard model, is reviewed and systematized. The 2D Hubbard model has been adopted as it has been considered the minimal model capable to describe the most peculiar features of cuprates held responsible for their anomalous behavior. COM is designed to endorse, since its foundations, the systematic emergence in any SCS of new elementary excitations described by composite operators obeying non-canonical algebras. In this case (underdoped cuprates - 2D Hubbard model), the residual interactions - beyond a 2-pole approximation - between the new elementary electronic excitations, dictated by the strong local Coulomb repulsion and well described by the two Hubbard composite operators, have been treated within the Non Crossing Approximation. Given this recipe and exploiting the few unknowns to enforce the Pauli principle content in the solution, it is possible to qualitatively describe some of the anomalous features of high-Tc cuprate superconductors such as large vs. small Fermi surface dichotomy, Fermi surface deconstruction (appearance of Fermi arcs), nodal vs. anti-nodal physics, pseudogap(s), kinks in the electronic dispersion. The resulting scenario envisages a smooth crossover between an ordinary weakly-interacting metal sustaining weak, short-range antiferromagnetic correlations in the overdoped regime to an unconventional poor metal characterized by very strong, long-but-finite-range antiferromagnetic correlations leading to momentum-selective non-Fermi liquid features as well as to the opening of a pseudogap and to the striking differences between the nodal and the anti-nodal dynamics in the underdoped regime.Comment: 30 PRB pages, 13 figures, 35 panel

    The Hubbard model beyond the two-pole approximation: a Composite Operator Method study

    Full text link
    Within the framework of the Composite Operator Method, a three-pole solution for the two-dimensional Hubbard model is presented and analyzed in detail. In addition to the two Hubbard operators, the operatorial basis comprises a third operator describing electronic transitions dressed by nearest-neighbor spin fluctuations. These latter, compared to charge and pair fluctuations, are assumed to be preeminent in the region of model-parameter space - small doping, low temperature and large on-site Coulomb repulsion - where one expects strong electronic correlations to dominate the physics of the system. This assumption and the consequent choice for the basic field, as well as the whole analytical approximation framework, have been validated through a comprehensive comparison with data for local and single-particle properties obtained by different numerical methods on varying all model parameters. The results systematically agree, both quantitatively and qualitatively, up to coincide in many cases. Many relevant features of the model, reflected by the numerical data, are exactly caught by the proposed solution and, in particular, the crossover between weak and intermediate-strong correlations as well as the shape of the occupied portion of the dispersion. A comprehensive comparison with other nn-pole solutions is also reported in order to explore and possibly understand the reasons of such good performance.Comment: 19 pages, 8 figures, 27 panel

    Antecedentes históricos de la deuda pública colombiana. Introducción panorámica acerca del manejo de la deuda pública en Colombia durante la posguerra, 1950-1970.

    Get PDF
    En este ensayo se discute el manejo de la deuda pública tanto interna como externa en Colombia, desde fines de la segunda guerra mundial hasta 1970. De acuerdo con el hilo común de anteriores ensayos, dicha experiencia se presenta a la luz del contexto internacional. Se muestra cómo el restablecimiento del financiamiento externo después de la guerra llegó primeramente en la forma de inversión directa, y no a través de canales crediticios, y cómo el apoyo internacional para reducir la carga de la deuda se hizo presente una vez más en los años cincuenta y sesenta. En cuanto al endeudamiento interno, la exposición explica cómo después de una pausa durante los cincuenta, las series de deuda interna alcanzaron tasas de crecimiento relativamente altas durante los sesenta.

    Effects of two-site composite excitations in the Hubbard model

    Full text link
    The electronic states of the Hubbard model are investigated by use of the Composite Operator Method. In addition to the Hubbard operators, two other operators related with two-site composite excitations are included in the basis. Within the present formulation, higher-order composite excitations are reduced to the chosen operatorial basis by means of a procedure preserving the particle-hole symmetry. The positive comparison with numerical simulations for the double occupancy indicates that such approximation improves over the two-pole approximation.Comment: 2 pages, 1 figur

    Symmetries in the Physics of Strongly Correlated Electronic Systems

    Full text link
    Strongly correlated electron systems require the development of new theoretical schemes in order to describe their unusual and unexpected properties. The usual perturbation schemes are inadequate and new concepts must be introduced. In our scheme of calculations, the Composite Operator Method, is possible to recover, through a self-consistent calculation, a series of fundamental symmetries by choosing a suitable Hilbert space.Comment: 11 pages, LaTeX, Cmp2e.sty used, submitted to Condensed Matter Physic

    Green's Function Formalism for Highly Correlated Systems

    Full text link
    We present the Composite Operator Method (COM) as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green's function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green's functions in order to maintain the algebraic and symmetry properties
    corecore