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The microscopical analysis of the unconventional and puzzling physics of the underdoped cuprates, as carried out lately by means
of the composite operator method (COM) applied to the 2D Hubbard model, is reviewed and systematized. The 2D Hubbard
model has been adopted as it has been considered the minimal model capable of describing the most peculiar features of cuprates
held responsible for their anomalous behavior. COM is designed to endorse, since its foundation, the systematic emergence in
any SCS of new elementary excitations described by composite operators obeying noncanonical algebras. In this case (underdoped
cuprates—2DHubbardmodel), the residual interactions—beyond a 2-pole approximation—between the new elementary electronic
excitations, dictated by the strong local Coulomb repulsion and well described by the two Hubbard composite operators, have been
treated within the noncrossing approximation. Given this recipe and exploiting the few unknowns to enforce the Pauli principle
content in the solution, it is possible to qualitatively describe some of the anomalous features of high-Tc cuprate superconductors
such as large versus small Fermi surface dichotomy, Fermi surface deconstruction (appearance of Fermi arcs), nodal versus
antinodal physics, pseudogap(s), and kinks in the electronic dispersion. The resulting scenario envisages a smooth crossover
between an ordinary weakly interactingmetal sustainingweak, short-range antiferromagnetic correlations in the overdoped regime
to an unconventional poor metal characterized by very strong, long-but-finite-range antiferromagnetic correlations leading to
momentum-selective non-Fermi liquid features as well as to the opening of a pseudogap and to the striking differences between
the nodal and the antinodal dynamics in the underdoped regime.

1. Introduction

1.1. Composite Fields. One of the most intriguing chal-
lenges in modern condensed matter physics is the theoret-
ical description of the anomalous behaviors experimentally
observed in many novel materials. By anomalous behaviors
we mean those not predicted by standard many-body theory,
that is, behaviors in contradiction with the Fermi-liquid
framework and diagrammatic expansions. The most relevant
characteristic of such novel materials is the presence of
so strong correlations among the electrons that classical
schemes based on the band picture and the perturbation
theory are definitely inapplicable. Accordingly, it is necessary
to move from a single-electron physics to a many-electron
physics, where the dominant contributions come from the

strong interactions among the electrons: usual schemes are
simply inadequate and new concepts must be introduced.

The classical techniques are based on the hypothesis
that the interactions among the electrons are weak enough,
or sufficiently well screened, to be properly taken into
account within the framework of perturbative/diagrammatic
methods. However, as many and many experimental and
theoretical studies of highly correlated systems have shown,
with more and more convincing evidence, all these methods
are no more viable. The main concept that breaks down is
the existence of the electrons as particles or quasiparticles
with quite-well-defined properties.The presence of the inter-
actions radically modifies the properties of the particles and,
at a macroscopic level, what are observed are new particles
(actually they are the only observable ones) with new peculiar
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properties entirely determined by the dynamics and by the
boundary conditions (i.e., the phase under study, the external
fields, . . .). These new objects appear as the final result of the
modifications imposed by the interactions on the original
particles and contain, by the very beginning, the effects of
correlations.

On the basis of this evidence, one is induced to move the
attention from the original fields to the new fields generated
by the interactions. The operators describing these excita-
tions, once they have been identified, can be written in terms
of the original ones and are known as composite operators.
The necessity of developing a formulation to treat composite
operators as fundamental objects of the many-body problem
in condensedmatter physics has been deeply understood and
systematically noticed since quite long time. Recent years
have seen remarkable achievements in the development of
a modern many-body theory in solid-state physics in the
form of an assortment of techniques that may be termed
composite particle methods. The foundations of these types
of techniques may be traced back to the work of Bogoliubov
[1] and later to that of Dancoff [2]. The work of Zwanzig
[3], Mori [4–9], and Umezawa [10] definitely deserves to be
mentioned too. Closely related to this work is that ofHubbard
[11–13], Rowe [14], Roth [15], and Tserkovnikov [16, 17]. The
slave boson method [18–20], the spectral density approach
[21, 22], the diagram technique for Hubbard operators [23],
the cumulant expansion based diagram technique [24], the
generalized tight-binding method [25–27], self-consistent
projection operator method [28, 29], operator projection
method [30–32], and the composite operatormethod (COM)
[33–35] are along the same lines. This large class of theories
is very promising as it is based on the firm conviction
that strong interactions call for an analysis in terms of new
elementary fields embedding the greatest possible part of
the correlations so permitting to overcome the problem of
finding an appropriate expansion parameter. However, one
price must be paid. In general, composite fields are neither
Fermi nor Bose operators, since they do not satisfy canonical
(anti)commutation relations, and their properties must be
determined self-consistently. They can only be recognized as
fermionic or bosonic operators according to the number and
type of the constituting original particles. Accordingly, new
techniques have to be developed in order to deal with such
composite fields and to design diagrammatic schemes where
the building blocks are the propagators of such composite
fields: standard diagrammatic expansions and the Wick’s
theorem are no more valid. The formulation of the Green’s
functionmethod itself must be revisited and new frameworks
of calculations have to be devised.

Following these ideas, we have been developing a sys-
tematic approach, the composite operator method (COM)
[33–35], to study highly correlated systems. The formalism is
based on two main ideas: (i) use of propagators of relevant
composite operators as building blocks for any subsequent
approximate calculations and (ii) use of algebra constraints to
fix the representation of the relevant propagators in order to
properly preserve algebraic and symmetry properties; these
constraints will also determine the unknown parameters
appearing in the formulation due to the noncanonical algebra

satisfied by the composite operators. In the last fifteen years,
COM has been applied to several models and materials:
Hubbard [36–47], 𝑝-𝑑 [48–51], 𝑡-𝐽 [52], 𝑡-𝑡󸀠-𝑈 [53–55],
extended Hubbard (𝑡-𝑈-𝑉) [56, 57], Kondo [58], Anderson
[59, 60], two-orbital Hubbard [61–63], Ising [64, 65], 𝐽

1
−

𝐽
2
[66–71], Hubbard-Kondo [72], Cuprates [73–78], and so

forth.

1.2. UnderdopedCuprates. Cuprate superconductors [79] dis-
play a full range of anomalous features, mainly appearing
in the underdoped region, in almost all experimentally
measurable physical properties [80–84]. According to this,
their microscopic description is still an open problem: non-
Fermi-liquid response, quantum criticality, pseudogap for-
mation, ill-defined Fermi surface, kinks in the electronic
dispersion, and so forth still remain unexplained (or at least
controversially debated) anomalous features [84–87]. In the
last years, the attention of the community has been focusing
on threemain experimental facts [84]: the dramatic change in
shape and nature of the Fermi surface between underdoped
and overdoped regimes, the appearance of a psedudogap
in the underdoped regime, and the striking differentiation
between the physics at the nodes and at the antinodes in the
pseudogap regime. The topological transition of the Fermi
surface has been first detected by means of ARPES [82]
and reflects the noteworthy differences between the quite-
ordinary, large Fermi surface measured in the overdoped
regime [88–90] and quite well described by LDA calculations
[91] and quantum oscillations measurements [92], and the
ill-defined Fermi arcs appearing in the underdoped regime
[85, 93–98]. The enormous relevance of these experimental
findings, not only for the microscopic comprehension of
the high-𝑇

𝑐
superconductivity phenomenology, but also for

the drafting of a general microscopic theory for strongly
correlated materials, called for many more measurements in
order to explore all possible aspects of such extremely anoma-
lous and peculiar behavior: plenty of quantum oscillations
measurements in the underdoped regime [99–118], Hall effect
measurements [100], Seebeck effect measurements [116], and
heat capacity measurements [115]. The presence of a quite
strong depletion in the electronic density of states, known
as pseudogap [119], is well established thanks to ARPES [82],
NMR [120], optical conductivity [121], and quantum oscilla-
tions [122] measurements. The microscopic origin of such a
loss of single-particle electronic states is still unclear and the
number of possible theoretical, as well as phenomenological,
explanations has grown quite large in the last few years. As
a matter of fact, this phenomenon affects any measurable
properties and, accordingly, was the first to be detected in the
underdoped regime granting to this latter the first evidences
of its exceptionality with respect to the other regimes in
the phase diagram. The plethora of theoretical scenarios
present in the literature [85, 123–125], tentatively explaining
few, some, or many of the anomalous features reported by
the experiments on underdoped cuprates, can be coarsely
divided into those not relying on any translational symmetry
breaking [126–131] and those instead proposing that it should
be some kind of charge and/or spin arrangements to be
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held responsible for the whole range of anomalous features.
Among these latter theories, there are those focusing on the
physics at the antinodal region and those focusing on the
nodal region. We can account for proposals of (as regards the
antinode): a collinear spin AF order [132], an AF quantum
critical point [133, 134], and a 1D charge stripe order [132, 135]
with the addition of a smectic phase [136]. Instead, at the
node, we have a 𝑑-density wave [137], amore-or-less ordinary
AF spin order [75–78, 138–142], and a nodal pocket from
bilayer low-𝑄 charge order, slowly fluctuacting [135, 143–
145]. This latter proposal, which is among the newest on the
table, relies onmany experimentalmeasurements: STM [146–
150], neutron scattering [122], X-ray diffraction [151], NMR
[152], RXS [153], and phonon softening [154–156]. A proposal
regarding the emergence of a hidden Fermi liquid [157] is also
worth mentioning.

1.3. 2D Hubbard Model: Approximation Methods. Since the
very beginning [158], the two-dimensional Hubbard model
[11] has been universally recognized as the minimal model
capable of describing the Cu–O

2
planes of cuprates super-

conductors. It certainly contains many of the key ingredients
by construction: strong electronic correlations, competi-
tion between localization and itineracy, Mott physics, and
low-energy spin excitations. Unfortunately, though being
fundamental for benchmarking and fine tuning analytical
theories, numerical approaches [159] cannot be of help to
solve the puzzle of underdoped cuprates owing to their
limited resolution in frequency and momentum. On the
other hand, there are not so many analytical approaches
capable of dealing with the quite complex aspects of under-
doped cuprates phenomenology [9]. Among others, the two-
particle self-consistent (TPSC) approach [86, 87, 160] has
been the first completely microscopic approach to obtain
results comparable with the experimental findings. Almost
all other promising approaches available in the literature
can be essentially divided into two classes. One class makes
use of phenomenological expressions for the electronic self-
energy and the electronic spin susceptibility [5–9, 161, 162].
The electronic self-energy is usually computed as the con-
volution of the electronic propagator and of the electronic
spin susceptibility. Then, the electronic spin susceptibility
is modeled phenomenologically parameterizing correlation
length and damping as functions of doping and temper-
ature according to the common belief that the electronic
spin susceptibility should present a well-developed mode at
𝑀 = (𝜋, 𝜋) with a damping of Landau type. The DMFT +

Σ approach [163–167] and the DGammaA approach [168,
169] should also be mentioned. All cluster-dynamical-mean-
field-like theories (cluster-DMFT theories) [86, 87, 170, 171]
(the cellular dynamical mean-field theory (C-DMFT) [172,
173], the dynamical cluster approximation (DCA) [174], and
the cluster perturbation theory (CPT) [86, 87, 175, 176])
belong to the second class. The dynamical mean-field theory
(DMFT) [177–181] cannot tackle the underdoped cuprates
puzzle because its self-energy has the same identical value
at each point on the Fermi surface without any possible
differentiation between nodal and antinodal physics or visible

and phantom portion of the Fermi surface. The cluster-
DMFT theories instead can, in principle, deal with both
coherent quasi-particles and marginal ones within the same
Fermi surface. These theories usually self-consistently map
the generic Hubbard problem to a few-site lattice Anderson
problem and solve this latter by means of, mainly, numerical
techniques. What really distinguishes one formulation from
another, within this second class, is the procedure used
to map the small cluster on the infinite lattice. Anyway,
it is worth noticing that these approaches often rely on
numerical methods in order to close their self-consistency
cycles (with the abovementioned limitations in frequency
and momentum resolutions and with the obvious difficulties
in the physical interpretation of their results) and always
face the emergence of a quite serious periodization problem
since a cluster embedded in the lattice violates its periodicity.
The Composite Operator Method (COM) [33–35] does not
belong to any of these two classes of theoretical formulations
and has the advantage to be completely microscopic, exclu-
sively analytical, and fully self-consistent. COM recipe uses
three main ingredients [33–35]: composite operators, algebra
constraints, and residual self-energy treatment. Composite
operators are products of electronic operators and describe
the new elementary excitations appearing in the system
owing to strong correlations. According to the system under
analysis [33–35], one has to choose a set of composite opera-
tors as operatorial basis and rewrite the electronic operators
and the electronic Green’s function in terms of this basis.
One should think of composite operators just as a more con-
venient starting point, with respect to electronic operators,
for any mean-field-like approximation/perturbation scheme.
Algebra constraints are relations among correlation functions
dictated by the noncanonical operatorial algebra closed by
the chosen operatorial basis [33–35]. Other ways to obtain
algebra constraints rely on the symmetries enjoined by the
Hamiltonian under study, the Ward-Takahashi identities, the
hydrodynamics, and so forth, [33–35]. One should think of
algebra constraints as a way to restrict the Fock space on
which the chosen operatorial basis acts to the Fock space of
physical electrons. Algebra constraints are used to compute
unknown correlation functions appearing in the calculations.
Interactions among the elements of the chosen operatorial
basis are described by the residual self-energy, that is, the
propagator of the residual term of the current after this latter
has been projected on the chosen operatorial basis [33–35].
According to the physical properties under analysis and the
range of temperatures, dopings, and interactions you want to
explore, one has to choose an approximation to compute the
residual self-energy. In the last years, we have been using the
𝑛-pole Approximation [36–43, 46, 48–57, 61–65, 72–74], the
Asymptotic Field Approach [58–60], the NCA [44, 45, 75–
78, 182], and the Two-Site Resolvent Approach [183, 184]. You
should think of the residual self-energy as a measure in the
frequency and momentum space of how much well defined
are, as quasi-particles, your composite operators. It is really
worth noticing that, although the description of some of the
anomalous features of underdoped cuprates given by COM
qualitatively coincides with those obtained by TPSC [86, 87]
and by the two classes of formulations mentioned above,
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the results obtained by means of COM greatly differ from
those obtained within the other methods as regards the
evolution with doping of the dispersion and of the Fermi
surface and, at the moment, no experimental result can tell
which is the unique and distinctive choice nature made.

1.4. Outline. To study the underdoped cuprates modeled by
the 2DHubbardmodel (see Section 2.1), we start from a basis
of two composite operators (the two Hubbard operators) and
formulate the Dyson equation (see Section 2.2) in terms of
the 2-pole approximated Green’s function (see Section 2.3).
According to this, the self-energy is the propagator of
nonlocal composite operators describing the electronic field
dressed by charge, spin, and pair fluctuations on the nearest-
neighbor sites. Then, within the noncrossing approximation
(NCA) [185], we obtain a microscopic self-energy written in
terms of the convolution of the electronic propagator and of
the charge, spin, and pair susceptibilities (see Section 2.4).
Finally, we close, fully analytically, the self-consistency cycle
for the electronic propagator by computing microscopic sus-
ceptibilities within a 2-pole approximation (see Section 2.5).
Our results (see Section 2.4) show that, within COM, the
two-dimensional Hubbard model can describe some of the
anomalous features experimentally observed in underdoped
cuprates phenomenology. In particular, we show how Fermi
arcs can develop out of a large Fermi surface (see Section 3.2),
how pseudogap can show itself in the dispersion (see
Section 3.1) and in the density of states (see Section 3.3),
how non-Fermi-liquid features can become apparent in the
momentum distribution function (see Section 3.4) and in the
frequency and temperature dependences of the self-energy
(see Section 3.5), how much kinked the dispersion can get on
varying doping (see Section 3.1), andwhy, or at least how, spin
dynamics can be held responsible for all this (see Section 3.6).
Finally (see Section 4), we summarize the current status of the
scenario emerging by these theoretical findings andwhich are
the perspectives.

2. Framework

2.1. Hamiltonian. The Hamiltonian of the two-dimensional
Hubbard model reads as

𝐻 = ∑

ij
(−𝜇𝛿ij − 4𝑡𝛼ij) 𝑐

†

(𝑖) 𝑐 (𝑗) + 𝑈∑

i
𝑛
↑
(𝑖) 𝑛

↓
(𝑖) , (1)

where

𝑐 (𝑖) = (

𝑐
↑
(𝑖)

𝑐
↓
(𝑖)

) (2)

is the electron field operator in spinorial notation and Hei-
senberg picture (𝑖 = (i, 𝑡

𝑖
)), i = Ri is a vector of the Bravais

lattice, 𝑛
𝜎
(𝑖) = 𝑐

†

𝜎
(𝑖)𝑐

𝜎
(𝑖) is the particle density operator for

spin 𝜎, 𝑛(𝑖) = ∑
𝜎
𝑛
𝜎
(𝑖) is the total particle density opera-

tor, 𝜇 is the chemical potential, 𝑡 is the hopping integral and

the energy unit, 𝑈 is the Coulomb on-site repulsion, and 𝛼ij
is the projector on the nearest-neighbor sites:

𝛼ij =
1

𝑁

∑

k
eik⋅(Ri−Rj)

𝛼 (k) ,

𝛼 (k) = 1

2

[cos (𝑘
𝑥
𝑎) + cos (𝑘

𝑦
𝑎)] ,

(3)

where k runs over the first Brillouin zone,𝑁 is the number of
sites, and 𝑎 is the lattice constant.

2.2. Green’s Functions and Dyson Equation. Following COM
prescriptions [33–35], we chose a basic field; in particular, we
select the composite doublet field operator:

𝜓 (𝑖) = (

𝜉 (𝑖)

𝜂 (𝑖)

) , (4)

where 𝜂(𝑖) = 𝑛(𝑖)𝑐(𝑖) and 𝜉(𝑖) = 𝑐(𝑖) − 𝜂(𝑖) are the Hubbard
operators describing the main subbands. This choice is
guided by the hierarchy of the equations of motion and by
the fact that 𝜉(𝑖) and 𝜂(𝑖) are eigenoperators of the interacting
term in the Hamiltonian (1). The field 𝜓(𝑖) satisfies the
Heisenberg equation:

i 𝜕
𝜕𝑡

𝜓 (𝑖) = 𝐽 (𝑖) = (

−𝜇𝜉 (𝑖) − 4𝑡𝑐

𝛼
(𝑖) − 4𝑡𝜋 (𝑖)

(𝑈 − 𝜇) 𝜂 (𝑖) + 4𝑡𝜋 (𝑖)

) , (5)

where the higher-order composite field 𝜋(𝑖) is defined by

𝜋 (𝑖) =

1

2

𝜎

𝜇
𝑛
𝜇
(𝑖) 𝑐

𝛼

(𝑖) + 𝑐 (𝑖) 𝑐

†𝛼

(𝑖) 𝑐 (𝑖) (6)

with the following notation: 𝑛
𝜇
(𝑖) = 𝑐

†
(𝑖)𝜎

𝜇
𝑐(𝑖) is the particle

(𝜇 = 0) and spin (𝜇 = 1, 2, 3) density operator and
𝜎
𝜇
= (1, 𝜎⃗), 𝜎𝜇 = (−1, 𝜎⃗), and 𝜎

𝑘
(𝑘 = 1, 2, 3) are the Pauli

matrices. Hereafter, for any operatorΦ(𝑖), we use the notation
Φ

𝛼
(i, 𝑡) = ∑j 𝛼ijΦ(j, 𝑡).
It is always possible to decompose the source 𝐽(𝑖) under

the form:

𝐽 (𝑖) = 𝜀 (−i∇)𝜓 (𝑖) + 𝛿𝐽 (𝑖) , (7)

where the linear term represents the projection of the source
on the basis 𝜓(𝑖) and is calculated by means of the equation:

⟨{𝛿𝐽 (i, 𝑡) , 𝜓†
(j, 𝑡)}⟩ = 0, (8)

where ⟨⋅ ⋅ ⋅ ⟩ stands for the thermal average taken in the grand-
canonical ensemble.

This constraint assures that the residual current 𝛿𝐽(𝑖)

contains all and only the physics orthogonal to the chosen
basis𝜓(𝑖).The action of the derivative operator 𝜀(−i∇) on𝜓(𝑖)
is defined in momentum space

𝜀 (−i∇)𝜓 (𝑖) = 𝜀 (−i∇) 1

√𝑁

∑

k
eik⋅Ri

𝜓 (k, 𝑡)

=

1

√
𝑁

∑

k
eik⋅Ri

𝜀 (k) 𝜓 (k, 𝑡) ,
(9)

where 𝜀(k) is namedenergy matrix.
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The constraint (8) gives

𝑚(k) = 𝜀 (k) 𝐼 (k) (10)

after defining the normalization matrix

𝐼 (i, j) = ⟨{𝜓 (i, 𝑡) , 𝜓†
(j, 𝑡)}⟩

=

1

𝑁

∑

k
eik⋅(Ri−Rj)

𝐼 (k) ,
(11)

and the𝑚-matrix

𝑚(i, j) = ⟨{𝐽 (i, 𝑡) , 𝜓†
(j, 𝑡)}⟩

=

1

𝑁

∑

k
eik⋅(Ri−Rj)

𝑚(k) .
(12)

Since the components of 𝜓(𝑖) contain composite opera-
tors, the normalization matrix 𝐼(k) is not the identity matrix
and defines the spectral content of the excitations. In fact, the
composite operator method has the advantage of describing
crossover phenomena as the phenomena in which the weight
of some operator is shifted to another one.

By considering the two-time thermodynamic Green’s
functions [186–188], let us define the retarded function

𝐺 (𝑖, 𝑗) = ⟨𝑅 [𝜓 (𝑖) 𝜓

†
(𝑗)]⟩

= 𝜃 (𝑡
𝑖
− 𝑡

𝑗
) ⟨{𝜓 (𝑖) , 𝜓

†
(𝑗)}⟩ .

(13)

By means of the Heisenberg equation (5) and using the
decomposition (7), the Green’s function 𝐺(𝑖, 𝑗) satisfies the
equation

Λ (𝜕
𝑖
) 𝐺 (𝑖, 𝑗) Λ

†
(
⃖
𝜕
𝑗
) = Λ (𝜕

𝑖
) 𝐺

0
(𝑖, 𝑗) Λ

†
(
⃖
𝜕
𝑗
)

+ ⟨𝑅 [𝛿𝐽 (𝑖) 𝛿𝐽

†
(𝑗)]⟩ ,

(14)

where the derivative operator Λ(𝜕
𝑖
) is defined as

Λ (𝜕
𝑖
) = i 𝜕

𝜕𝑡
𝑖

− 𝜀 (−i∇
𝑖
) , (15)

and the propagator 𝐺0
(𝑖, 𝑗) is defined by the equation

Λ (𝜕
𝑖
) 𝐺

0
(𝑖, 𝑗) = i𝛿 (𝑡

𝑖
− 𝑡

𝑗
) 𝐼 (𝑖, 𝑗) . (16)

By introducing the Fourier transform

𝐺 (𝑖, 𝑗) =

1

𝑁

∑

k

i
2𝜋

∫𝑑𝜔eik⋅(Ri−Rj)−i𝜔(𝑡𝑖−𝑡𝑗)
𝐺 (k, 𝜔) (17)

equation (14) in momentum space can be written as

𝐺 (k, 𝜔) = 𝐺

0

(k, 𝜔) + 𝐺

0

(k, 𝜔) 𝐼−1 (k) Σ (k, 𝜔) 𝐺 (k, 𝜔) ,
(18)

and can be formally solved as

𝐺 (k, 𝜔) = 1

𝜔 − 𝜀 (k) − Σ (k, 𝜔)
𝐼 (k) , (19)

where the self-energy Σ(k, 𝜔) has the expression

Σ (k, 𝜔) = 𝐵irr (k, 𝜔) 𝐼
−1

(k) (20)

with

𝐵 (k, 𝜔) = F ⟨𝑅 [𝛿𝐽 (𝑖) 𝛿𝐽

†
(𝑗)]⟩ . (21)

The notation F denotes the Fourier transform and
the subscript irr indicates that the irreducible part of the
propagator 𝐵(k, 𝜔) is taken. Equation (18) is nothing else
than the Dyson equation for composite fields and represents
the starting point for a perturbative calculation in terms of
the propagator 𝐺0

(k, 𝜔). This quantity will be calculated in
the next section. Then, the attention will be given to the
calculation of the self-energy Σ(k, 𝜔). It should be noted
that the computation of the two quantities 𝐺

0
(k, 𝜔) and

Σ(k, 𝜔) is intimately related. The total weight of the self-
energy corrections is bounded by the weight of the residual
source operator 𝛿𝐽(𝑖). According to this, it can be made
smaller and smaller by increasing the components of the basis
𝜓(𝑖) (e.g., by including higher-order composite operators
appearing in 𝛿𝐽(𝑖)). The result of such a procedure will be
the inclusion in the energy matrix of part of the self-energy
as an expansion in terms of coupling constants multiplied by
the weights of the newly included basis operators. In general,
the enlargement of the basis leads to a new self-energy with
a smaller total weight. However, it is necessary pointing out
that this process can be quite cumbersome and the inclusion
of fully momentum and frequency dependent self-energy
corrections can be necessary to effectively take into account
low-energy and virtual processes. According to this, one can
choose a reasonable number of components for the basic set
and then use another approximation method to evaluate the
residual dynamical corrections.

2.3. Two-Pole Approximation. According to (16), the free
propagator 𝐺0

(k, 𝜔) is determined by the following expres-
sion:

𝐺

0

(k, 𝜔) = 1

𝜔 − 𝜀 (k)
𝐼 (k) . (22)

For a paramagnetic state, straightforward calculations
give the following expressions for the normalization 𝐼(k) and
energy 𝜀(k)matrices:

𝐼 (k) = (

1 −

𝑛

2

0

0

𝑛

2

) = (

𝐼
11

0

0 𝐼
22

) ,

𝜀
11
(k) = −𝜇 − 4𝑡𝐼

−1

11
[Δ + (1 − 𝑛 + 𝑝) 𝛼 (k)] ,

𝜀
12
(k) = 4𝑡𝐼

−1

22
[Δ + (𝑝 − 𝐼

22
) 𝛼 (k)] ,

𝜀
21
(k) = 4𝑡𝐼

−1

11
[Δ + (𝑝 − 𝐼

22
) 𝛼 (k)] ,

𝜀
22
(k) = 𝑈 − 𝜇 − 4𝑡𝐼

−1

22
[Δ + 𝑝𝛼 (k)] ,

(23)
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where 𝑛 = ⟨𝑛 (𝑖)⟩ is the filling and

Δ = ⟨𝜉

𝛼

(𝑖) 𝜉

†

(𝑖)⟩ − ⟨𝜂

𝛼

(𝑖) 𝜂

†

(𝑖)⟩ ,

𝑝 =

1

4

⟨𝑛

𝛼

𝜇
(𝑖) 𝑛

𝜇
(𝑖)⟩ − ⟨[𝑐

↑
(𝑖) 𝑐

↓
(𝑖)]

𝛼

𝑐

†

↓
(𝑖) 𝑐

†

↑
(𝑖)⟩ .

(24)

Then, (22) can be written in spectral form as

𝐺

0

(k, 𝜔) =
2

∑

𝑛=1

𝜎

(𝑛)
(k)

𝜔 − 𝐸
𝑛
(k) + i𝛿

. (25)

The energy spectra 𝐸
𝑛
(k) and the spectral functions

𝜎

(𝑛)
(k) are given by

𝐸
1
(k) = 𝑅 (k) + 𝑄 (k) ,

𝐸
2
(k) = 𝑅 (k) − 𝑄 (k) ,

𝜎

(1)

11
(k) = 𝐼

11

2

[1 +

𝑔 (k)
2𝑄 (k)

] ,

𝜎

(2)

11
(k) = 𝐼

11

2

[1 −

𝑔 (k)
2𝑄 (k)

] ,

𝜎

(1)

12
(k) = 𝑚

12
(k)

2𝑄 (k)
,

𝜎

(2)

12
(k) = −

𝑚
12
(k)

2𝑄 (k)
,

𝜎

(1)

22
(k) = 𝐼

22

2

[1 −

𝑔 (k)
2𝑄 (k)

] ,

𝜎

(2)

22
(k) = 𝐼

22

2

[1 +

𝑔 (k)
2𝑄 (k)

] ,

(26)

where

𝑅 (k) = − 𝜇 − 4𝑡𝛼 (k) + 1

2

𝑈 −

𝜀
12
(k)

2𝐼
11

,

𝑄 (k) = 1

2

√
𝑔

2
(k) +

4𝜀

2

12
(k) 𝐼

22

𝐼
11

,

𝑔 (k) = − 𝑈 +

1 − 𝑛

𝐼
11

𝜀
12
(k) .

(27)

The energy matrix 𝜀(k) contains three parameters: 𝜇,
the chemical potential, Δ, the difference between upper and
lower intrasubband contributions to kinetic energy, and 𝑝,
a combination of the nearest-neighbor charge-charge, spin-
spin, and pair-pair correlation functions. These parameters
will be determined in a self-consistent way by means of
algebra constraints in terms of the external parameters 𝑛, 𝑈,
and 𝑇.

2.4. Noncrossing Approximation. The calculation of the self-
energy Σ(k, 𝜔) requires the calculation of the higher-order
propagator𝐵(k, 𝜔) [cf. (21)].Wewill compute this quantity by

using the noncrossing approximation (NCA). By neglecting
the pair term 𝑐(𝑖)𝑐

†𝛼
(𝑖)𝑐(𝑖), the source 𝐽(𝑖) can be written as

𝐽 (i, 𝑡) = ∑

j
𝑎 (i, j, 𝑡) 𝜓 (j, 𝑡) , (28)

where

𝑎
11
(i, j, 𝑡) = −𝜇𝛿ij − 4𝑡𝛼ij − 2𝑡𝜎

𝜇
𝑛
𝜇
(𝑖) 𝛼ij,

𝑎
12
(i, j, 𝑡) = −4𝑡𝛼ij − 2𝑡𝜎

𝜇
𝑛
𝜇
(𝑖) 𝛼ij,

𝑎
21
(i, j, 𝑡) = 2𝑡𝜎

𝜇
𝑛
𝜇
(𝑖) 𝛼ij,

𝑎
22
(i, j, 𝑡) = (𝑈 − 𝜇) 𝛿ij + 2𝑡𝜎

𝜇
𝑛
𝜇
(𝑖) 𝛼ij.

(29)

Then, for the calculation of 𝐵irr(𝑖, 𝑗) = ⟨𝑅[𝛿𝐽(𝑖)𝛿𝐽

†
(𝑗)]⟩irr,

we approximate

𝛿𝐽 (i, 𝑡) ≈ ∑

j
[𝑎 (i, j, 𝑡) − ⟨𝑎 (i, j, 𝑡)⟩] 𝜓 (j, 𝑡) . (30)

Therefore

𝐵irr (𝑖, 𝑗) = 4𝑡

2
𝐹 (𝑖, 𝑗) (1 − 𝜎

1
) , (31)

where we defined

𝐹 (𝑖, 𝑗) = ⟨𝑅 [𝜎

𝜇
𝛿𝑛

𝜇
(𝑖) 𝑐

𝛼

(𝑖) 𝑐

†𝛼
(𝑗) 𝛿𝑛

𝜆
(𝑗) 𝜎

𝜆
]⟩ (32)

with 𝛿𝑛
𝜇
(𝑖) = 𝑛

𝜇
(𝑖) − ⟨𝑛

𝜇
(𝑖)⟩. The self-energy (20) is written

as

Σ (k, 𝜔) = 4𝑡

2
𝐹 (k, 𝜔)(

𝐼

−2

11
−𝐼

−1

11
𝐼

−1

22

−𝐼

−1

11
𝐼

−1

22
𝐼

−2

22

) . (33)

In order to calculate the retarded function 𝐹(𝑖, 𝑗), first we
use the spectral theorem to express

𝐹 (𝑖, 𝑗) =

𝑖

2𝜋

∫

+∞

−∞

𝑑𝜔e−i𝜔(𝑡𝑖−𝑡𝑗)

×

1

2𝜋

∫

+∞

−∞

𝑑𝜔

󸀠 1 + e−𝛽𝜔
󸀠

𝜔 − 𝜔

󸀠
+ i𝜀

𝐶 (i − j, 𝜔󸀠
) ,

(34)

where 𝐶(i − j, 𝜔󸀠
) is the correlation function

𝐶 (𝑖, 𝑗) = ⟨𝜎

𝜇
𝛿𝑛

𝜇
(𝑖) 𝑐

𝛼

(𝑖) 𝑐

†𝛼
(𝑗) 𝛿𝑛

𝜆
(𝑗) 𝜎

𝜆
⟩

=

1

2𝜋

∫𝑑𝜔e−i𝜔(𝑡𝑖−𝑡𝑗)𝐶 (i − j, 𝜔) .
(35)

Next, we use the noncrossing approximation (NCA) and
approximate

⟨𝜎

𝜇
𝛿𝑛

𝜇
(𝑖) 𝑐

𝛼

(𝑖) 𝑐

†𝛼
(𝑗) 𝛿𝑛

𝜆
(𝑗) 𝜎

𝜆
⟩

≈ ⟨𝛿𝑛
𝜇
(𝑖) 𝛿𝑛

𝜇
(𝑗)⟩ ⟨𝑐

𝛼

(𝑖) 𝑐

†𝛼
(𝑗)⟩ .

(36)
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By means of this decoupling and using again the spectral
theorem we finally have

𝐹 (k, 𝜔) = 1

𝜋

∫

+∞

−∞

𝑑𝜔

󸀠 1

𝜔 − 𝜔

󸀠
+ i𝛿

𝑎

2

(2𝜋)

3
∫𝑑

2
𝑝𝑑Ω𝛼

2
(𝑝)

× [tanh
𝛽Ω

2

+ coth
𝛽 (𝜔

󸀠
− Ω)

2

]

×I [𝐺
𝑐𝑐
(p, Ω)]I [𝜒 (k − p, 𝜔󸀠

− Ω)] ,

(37)

where𝐺
𝑐𝑐
(k, 𝜔) is the retarded electronicGreen’s function [cf.

(13)]

𝐺
𝑐𝑐
(k, 𝜔) =

2

∑

𝑎,𝑏=1

𝐺
𝑎𝑏
(k, 𝜔) , (38)

𝜒 (k, 𝜔) = ∑

𝜇

F ⟨𝑅 [𝛿𝑛
𝜇
(𝑖) 𝛿𝑛

𝜇
(𝑗)]⟩ (39)

is the total charge and spin dynamical susceptibility. The
result (37) shows that the calculation of the self-energy
requires the knowledge of the bosonic propagator (39). This
problem will be considered in the following section.

It is worth noting that the NCA can also be applied to
the casual propagators giving the same result. In general, the
knowledge of the self-energy requires the calculation of the
higher-order propagator 𝐵𝑄

(𝑖, 𝑗) = ⟨Q[𝛿𝐽(𝑖)𝛿𝐽†(𝑗)]⟩, where
𝑄 can be 𝑅 (retarded propagator) o 𝑇 (causal propagator).
Then, typically we have to calculate propagator of the form

𝐻

𝑅
(𝑖, 𝑗) = ⟨R [𝐵 (𝑖) 𝐹 (𝑖) 𝐹

†
(𝑗) 𝐵

†
(𝑗)]⟩ , (40)

where𝐹(𝑖) and𝐵(𝑖) are fermionic and bosonic field operators,
respectively. By means of the spectral representation we can
write

𝐻

𝑅

(k, 𝜔)

= −

1

𝜋

∫

+∞

−∞

𝑑𝜔

󸀠 1

𝜔 − 𝜔

󸀠
+ i𝛿

coth
𝛽𝜔

󸀠

2

I [𝐻

𝐶
(k, 𝜔󸀠

)] ,

(41)

where 𝐻𝐶
(𝑖, 𝑗) = ⟨T[𝐵(𝑖)𝐹(𝑖)𝐹

†
(𝑗)𝐵

†
(𝑗)]⟩ is the causal pro-

pagator. In the NCA, we approximate

𝐻

𝐶
(𝑖, 𝑗) ≈ 𝑓

𝐶
(𝑖, 𝑗) 𝑏

𝐶
(𝑖, 𝑗) ,

𝑓

𝐶
(𝑖, 𝑗) = ⟨T [𝐹 (𝑖) 𝐹

†
(𝑗)]⟩ ,

𝑏

𝐶
(𝑖, 𝑗) = ⟨T [𝐵 (𝑖) 𝐵

†
(𝑗)]⟩ .

(42)

Then, we can use the spectral representation to obtain

𝑓

𝐶

(k, 𝜔) = −

1

𝜋

∫

+∞

−∞

𝑑𝜔

󸀠
[

1 − 𝑓F (𝜔
󸀠
)

𝜔 − 𝜔

󸀠
+ i𝛿

+

𝑓F (𝜔
󸀠
)

𝜔 − 𝜔

󸀠
− i𝛿

]

×I [𝑓

𝑅
(k, 𝜔󸀠

)] ,

𝑏

𝐶

(k, 𝜔) = −

1

𝜋

∫

+∞

−∞

𝑑𝜔

󸀠
[

1 + 𝑓
𝐵
(𝜔

󸀠
)

𝜔 − 𝜔

󸀠
+ i𝛿

−

𝑓
𝐵
(𝜔

󸀠
)

𝜔 − 𝜔

󸀠
− i𝛿

]

×I [𝑏

𝑅
(k, 𝜔󸀠

)]

(43)

which leads to

𝐻

𝑅

(k, 𝜔) = 1

𝜋

∫

+∞

−∞

𝑑𝜔

󸀠 1

𝜔 − 𝜔

󸀠
+ i𝛿

𝑎

𝑑

(2𝜋)

𝑑+1

× ∫

Ω𝐵

𝑑

𝑑
𝑝𝑑ΩI [𝑓

𝑅
(𝑝, Ω)]

×I [𝑏

𝑅
(𝑘 − 𝑝, 𝜔

󸀠
− Ω)]

× [tanh
𝛽Ω

2

+ coth
𝛽 (𝜔

󸀠
− Ω)

2

] .

(44)

It is worth noting that, up to this point, the system of
equations for the Green’s function and the anomalous self-
energy is similar to the one derived in the two-particle self-
consistent approach (TPSC) [86, 87, 160], the DMFT + Σ

approach [163–167], and a Mori-like approach by Plakida
and coworkers [6, 7, 9]. It would be the way to compute the
dynamical spin and charge susceptibilities to be completely
different as, instead of relying on a phenomenological model
and neglecting the charge susceptibility as these approches
do, we will use a self-consistent two-pole approximation.
Obviously, a proper description of the spin and charge
dynamics would definitely require the inclusion of a proper
self-energy term in the charge and spin propagators too in
order to go beyond both any phenomenological approch and
the two-pole approximation (in preparation). On the other
hand, the description of the electronic anomalous features
could (actuallywill, see in the following) not need this further,
and definitely not trivial, complication.

2.5. Dynamical Susceptibility. In this section, we will present
a calculation of the charge-charge and spin-spin propagators
(39) within the two-pole approximation. This approximation
has shown to be capable of catching correctly some of the
physical features of Hubbard model dynamics (for all details
see [40]).

Let us define the composite bosonic field:

𝑁

(𝜇)

(𝑖) = (

𝑛
𝜇
(𝑖)

𝜌
𝜇
(𝑖)

) ,

𝑛
𝜇
(𝑖) = 𝑐

†

(𝑖) 𝜎
𝜇
𝑐 (𝑖) ,

𝜌
𝜇
(𝑖) = 𝑐

†

(𝑖) 𝜎
𝜇
𝑐

𝛼

(𝑖) − 𝑐

†𝛼

(𝑖) 𝜎
𝜇
𝑐 (𝑖) .

(45)
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This field satisfies the Heisenberg equation:

i 𝜕
𝜕𝑡

𝑁

(𝜇)

(𝑖) = 𝐽

(𝜇)

(𝑖) = (

𝐽

(𝜇)

1
(𝑖)

𝐽

(𝜇)

2
(𝑖)

)

𝐽

(𝜇)

1
(𝑖) = −4𝑡𝜌

𝜇
(𝑖) ,

𝐽

(𝜇)

2
(𝑖) = 𝑈𝜅

𝜇
(𝑖) − 4𝑡𝑙

𝜇
(𝑖) ,

(46)

where the higher-order composite fields 𝜅
𝜇
(𝑖) and 𝑙

𝜇
(𝑖) are

defined as

𝜅
𝜇
(𝑖) = 𝑐

†

(𝑖) 𝜎
𝜇
𝜂

𝛼

(𝑖) − 𝜂

†

(𝑖) 𝜎
𝜇
𝑐

𝛼

(𝑖)

+ 𝜂

†𝛼

(𝑖) 𝜎
𝜇
𝑐 (𝑖) − 𝑐

†𝛼

(𝑖) 𝜎
𝜇
𝜂 (𝑖) ,

𝑙
𝜇
(𝑖) = 𝑐

†

(𝑖) 𝜎
𝜇
𝑐

𝛼
2

(𝑖) + 𝑐

†𝛼
2

(𝑖) 𝜎
𝜇
𝑐 (𝑖)

− 2𝑐

†𝛼

(𝑖) 𝜎
𝜇
𝑐

𝛼

(𝑖) ,

(47)

and we are using the notation

𝑐

𝛼
2

(i, 𝑡) = ∑

j
𝛼

2

ij𝑐 (j, 𝑡) = ∑

jl
𝛼il𝛼lj𝑐 (j, 𝑡) . (48)

We linearize the equation of motion (46) for the compos-
ite field 𝑁

(𝜇)
(𝑖) by using the same criterion as in Section 2.2

(i.e., the neglected residual current 𝛿𝐽(𝜇)(𝑖) is orthogonal to
the chosen basis (45))

i 𝜕
𝜕𝑡

𝑁

(𝜇)

(i, 𝑡) = ∑

j
𝜀

(𝜇)
(i, j)𝑁(𝜇)

(j, 𝑡) , (49)

where the energy matrix is given by

𝑚

(𝜇)
(i, j) = ∑

l
𝜀

(𝜇)

(i, l) 𝐼(𝜇) (l, j) , (50)

and the normalization matrix 𝐼

(𝜇) and the 𝑚(𝜇) matrix have
the following definitions:

𝐼

(𝜇)
(i, j) = ⟨[𝑁

(𝜇)

(i, 𝑡) , 𝑁(𝜇)†
(j, 𝑡)]⟩ ,

𝑚

(𝜇)
(i, j) = ⟨[𝐽

(𝜇)

(i, 𝑡) , 𝑁(𝜇)†
(j, 𝑡)]⟩ .

(51)

As it can be easily verified, in the paramagnetic phase, the
normalization matrix 𝐼

(𝜇) does not depend on the index 𝜇:
charge and spin operators have the same weight. The two
matrices 𝐼(𝜇) and𝑚(𝜇) have the following form inmomentum
space:

𝐼

(𝜇)

(k) = (

0 𝐼

(𝜇)

12
(k)

𝐼

(𝜇)

12
(k) 0

) ,

𝑚

(𝜇)

(k) = (

𝑚

(𝜇)

11
(k) 0

0 𝑚

(𝜇)

22
(k)

) ,

(52)

where

𝐼

(𝜇)

12
(k) = 4 [1 − 𝛼 (k)] 𝐶𝛼

𝑐𝑐
,

𝑚

(𝜇)

11
(k) = − 4𝑡𝐼

(𝜇)

12
(k) ,

𝑚

(𝜇)

22
(k) = − 4𝑡𝐼

𝑙𝜇𝜌𝜇
(k) + 𝑈𝐼

𝜅𝜇𝜌𝜇
(k) .

(53)

The parameter 𝐶𝛼 is the electronic correlation function
𝐶

𝛼
= ⟨𝑐

𝛼
(𝑖)𝑐

†
(𝑖)⟩. The quantities 𝐼

𝑙𝜇𝜌𝜇
(k) and 𝐼

𝜅𝜇𝜌𝜇
(k) are

defined as

𝐼
𝑙𝜇𝜌𝜇

(k) = F ⟨[𝑙
𝜇
(i, 𝑡) , 𝜌†

𝜇
(j, 𝑡)]⟩ ,

𝐼
𝜅𝜇𝜌𝜇

(k) = F ⟨[𝜅
𝜇
(i, 𝑡) , 𝜌†

𝜇
(j, 𝑡)]⟩ .

(54)

Let us define the causal Green’s function (for bosonic-like
fields we have to compute the casual Green’s function and
deduce from this latter the retarded one according to the
prescriptions in [33–35]),

𝐺

(𝜇)
(𝑖, 𝑗) = ⟨𝑇 [𝑁

(𝜇)

(𝑖)𝑁

(𝜇)†
(𝑗)]⟩

=

i𝑎2

(2𝜋)

3
∫𝑑

2
𝑘𝑑𝜔eik⋅(Ri−Rj)−i𝜔(𝑡𝑖−𝑡𝑗)

𝐺

(𝜇)

(k, 𝜔) .

(55)

By means of the equation of motion (49), the Fourier trans-
form of 𝐺(𝜇)

(𝑖, 𝑗) satisfies the following equation:

[𝜔 − 𝜀

(𝜇)

(k)] 𝐺(𝜇)

(k, 𝜔) = 𝐼

(𝜇)

(k) , (56)

where the energy matrix has the explicit form

𝜀

(𝜇)

(k) = (

0 𝜀

(𝜇)

12
(k)

𝜀

(𝜇)

21
(k) 0

) ,

𝜀

(𝜇)

12
(k) = −4𝑡,

𝜀

(𝜇)

21
(k) =

𝑚

(𝜇)

22
(k)

𝐼

(𝜇)

12
(k)

.

(57)

The solution of (56) is

𝐺

(𝜇)

(k, 𝜔)

= Γ

(𝜇)

(k) [ 1

𝜔 + i𝛿
−

1

𝜔 − i𝛿
]

+

2

∑

𝑛=1

𝜎

(𝑛,𝜇)

(k) [
1 + 𝑓B (𝜔)

𝜔 − 𝜔

(𝜇)

𝑛 (k) + i𝛿
−

𝑓B (𝜔)

𝜔 − 𝜔

(𝜇)

𝑛 (k) − i𝛿
] ,

(58)
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where Γ(𝜇)(k) is the zero frequency function (2 × 2 matrix)
[33–35] and𝑓B(𝜔) = [e𝛽𝜔−1]−1 is the Bose distribution func-
tion. Correspondingly, the correlation function 𝐶

(𝜇)
(k, 𝜔) =

⟨𝑁

(𝜇)
(𝑖)𝑁

(𝜇)†
(𝑗)⟩ has the expression

𝐶

(𝜇)

(k, 𝜔) = 2𝜋Γ

(𝜇)

(k) 𝛿 (𝜔)

+ 2𝜋

2

∑

𝑛=1

𝛿 [𝜔 − 𝜔

(𝜇)

𝑛
(k)] [1 + 𝑓B (𝜔)] 𝜎

(𝑛,𝜇)

(k) .

(59)

The energy spectra 𝜔(𝜇)

𝑛
(k) are given by

𝜔

(𝜇)

𝑛
(k) = (−)

𝑛
𝜔

(𝜇)

(k) ,

𝜔

(𝜇)

(k) = √
𝜀

(𝜇)

12
(k) 𝜀(𝜇)

21
(k),

(60)

and the spectral functions𝜎(𝑛,𝜇)(k) have the following expres-
sion:

𝜎

(𝑛,𝜇)

(k) =
𝐼

(𝜇)

12
(k)
2

(

𝜀

(𝜇)

12
(k)

𝜔

(𝜇)

𝑛 (k)
1

1

𝜀

(𝜇)

21
(k)

𝜔

(𝜇)

𝑛 (k)

) . (61)

Straightforward but lengthy calculations (see [40]) give for
the 2D system the following expressions for the commutators
in (54):

𝐼
𝑙𝜇𝜌𝜇

(k) = 3

4

[1 − 𝛼 (k)] (12𝐶𝛼
+ 𝐶

𝜆
+ 6𝐶

𝜇
)

− 3 [1 − 𝛽 (k)] (𝐶𝛼
+ 𝐶

𝜇
)

−

3

4

[1 − 𝜂 (k)] (𝐶𝛼
+ 𝐶

𝜆
+ 2𝐶

𝜇
)

+

1

4

[1 − 𝜆 (k)] 𝐶𝜆
+

3

2

[1 − 𝜇 (k)] 𝐶𝜇
,

𝐼
𝜅𝜇𝜌𝜇

(k) = −2 [1 − 𝛼 (k)] 𝐷 + [1 − 2𝛼 (k)] (2𝐸𝛽
+ 𝐸

𝜂
)

+ 2𝛽 (k) 𝐸𝛽
+ 𝜂 (k) 𝐸𝜂

+ [1 − 2𝛼 (k)] 𝑎
𝜇

+

1

4

[𝑏
𝜇
+ 2𝛽 (k) 𝑐

𝜇
+ 𝜂 (k) 𝑑

𝜇
] ,

(62)

where 𝛼(k), 𝛽(k), 𝜂(k), 𝜇(k), and 𝜆(k) are the Fourier
transforms of the projectors on the first, second, third, fourth,

and fifth nearest-neighbor sites.The parameters appearing in
(62) are defined by

𝐸 = ⟨𝑐 (𝑖) 𝜂

†

(𝑖)⟩ , 𝐶

𝛼
= ⟨𝑐

𝛼

(𝑖) 𝑐

†

(𝑖)⟩ ,

𝐸

𝛽
= ⟨𝑐

𝛽

(𝑖) 𝜂

†

(𝑖)⟩ , 𝐶

𝜆
= ⟨𝑐

𝜆

(𝑖) 𝑐

†

(𝑖)⟩ ,

𝐸

𝜂
= ⟨𝑐

𝜂

(𝑖) 𝜂

†

(𝑖)⟩ , 𝐶

𝜇
= ⟨𝑐

𝜇

(𝑖) 𝑐

†

(𝑖)⟩ ,

(63)

𝑎
𝜇
= 2 ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝑐

𝛼

(𝑖) 𝑐

†

(𝑖) 𝜎
𝜇
𝑐

𝛼

(𝑖)⟩

− ⟨𝑐

†𝛼

(𝑖) 𝜎
𝜇
𝜎

𝜆
𝜎
𝜇
𝑐

𝛼

(𝑖) 𝑛
𝜆
(𝑖)⟩ ,

𝑏
𝜇
= 2 ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝑐

†

(𝑖) 𝜎
𝜇
[𝑐 (𝑖) 𝑐 (𝑖)]

𝛼
⟩

− ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝜎

𝜆
𝜎
𝜇
𝑐 (𝑖) 𝑛

𝛼

𝜆
(𝑖)⟩ ,

𝑐
𝜇
= 2 ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝑐

†
(𝑖

𝜂
) 𝜎

𝜇
𝑐 (𝑖

𝛼
) 𝑐 (𝑖

𝛼
)⟩

− ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝜎

𝜆
𝜎
𝜇
𝑐 (𝑖

𝜂
) 𝑛

𝜆
(𝑖

𝛼
)⟩ ,

𝑑
𝜇
= 2 ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝑐

†
(𝑖

𝛽
) 𝜎

𝜇
𝑐 (𝑖

𝛼
) 𝑐 (𝑖

𝛼
)⟩

− ⟨𝑐

†

(𝑖) 𝜎
𝜇
𝜎

𝜆
𝜎
𝜇
𝑐 (𝑖

𝛽
) 𝑛

𝜆
(𝑖

𝛼
)⟩ ,

(64)

where we used the notation

𝑖 = (𝑖
𝑥
, 𝑖
𝑦
, 𝑡) , 𝑖

𝛽
= (𝑖

𝑥
+ 𝑎, 𝑖

𝑦
+ 𝑎, 𝑡) ,

𝑖

𝛼
= (𝑖

𝑥
+ 𝑎, 𝑖

𝑦
, 𝑡) , 𝑖

𝜂
= (𝑖

𝑥
+ 2𝑎, 𝑖

𝑦
, 𝑡) .

(65)

We see that the bosonic Green’s function 𝐺

(𝜇)
(𝑖, 𝑗) =

⟨𝑇[𝑁

(𝜇)
(𝑖)𝑁

(𝜇)†
(𝑗)]⟩ depends on the following set of param-

eters. Fermionic correlators: 𝐶𝛼, 𝐶𝜆, 𝐶𝜇, 𝐸𝛽, 𝐸𝜂, and 𝐷;
bosonic correlators: 𝑎

𝜇
, 𝑏

𝜇
, 𝑐

𝜇
, and 𝑑

𝜇
; zero frequency matrix:

Γ

(𝜇)
(k). The fermionic parameters are calculated through

the Fermionic correlation function 𝐶(𝑖, 𝑗) = ⟨𝜓(𝑖)𝜓

†
(𝑗)⟩.

The bosonic parameters are determined through symmetry
requirements. In particular, the requirement that the conti-
nuity equation should be satisfied and that the susceptibility
should be a single-value function at k = 0 leads to the
following equations:

𝑏
𝜇
= 𝑎

𝜇
+ 3𝐷 + 2𝐸

𝛽
+ 𝐸

𝜂
− 6

𝑡

𝑈

(𝐶

𝛼
+ 𝐶

𝜆
− 2𝐶

𝜇
) ,

𝑐
𝜇
= 𝑎

𝜇
− 𝐷 − 2𝐸

𝛽
+ 𝐸

𝜂
+ 6

𝑡

𝑈

(𝐶

𝛼
+ 𝐶

𝜆
− 2𝐶

𝜇
) ,

𝑑
𝜇
= 𝑎

𝜇
− 𝐷 + 2𝐸

𝛽
− 3𝐸

𝜂
− 6

𝑡

𝑈

(𝐶

𝛼
+ 𝐶

𝜆
− 2𝐶

𝜇
) .

(66)

The remaining parameters 𝑎
𝜇
and Γ

(𝜇)

11
(k) are fixed by

means of the Pauli principle

⟨𝑛
𝜇
(𝑖) 𝑛

𝜇
(𝑖)⟩ = {

𝑛 + 2𝐷 for 𝜇 = 0

𝑛 − 2𝐷 for 𝜇 = 1, 2, 3,

(67)
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B0(ac0, as0)

G0(𝜇0, Δ0, p0)

n = 0

n = n + 1

Yes No

Σn[Bn, Gn]

Gn(𝜇n, Δn, pn)[Σn−1] Bn(acn, asn)

Self-consistency 𝜇n−1, Δn−1, pn−1

𝜇n, Δn, pn ==

Figure 1: (Color online) Self-consistency scheme to compute the propagator𝐺 in terms of the charge-charge and spin-spin propagator 𝐵 and
the residual self-energy Σ.

where 𝐷 = ⟨𝑛
↑
(𝑖)𝑛

↓
(𝑖)⟩ is the double occupancy, and by the

ergodic value

Γ

(𝜇)

11
(k) = 𝛿

𝜇,0

(2𝜋)

2

𝑎

2
𝛿

(2)

(k) ⟨𝑛⟩2 . (68)

By putting (68) into (58) and (59) we obtain

⟨𝛿𝑛
𝜇
(𝑖) 𝛿𝑛

𝜇
(𝑗)⟩

=

𝑎

2

2 (2𝜋)

2

2

∑

𝑛=1

∫𝑑

2
𝑘eik⋅(Ri−Rj)−i𝜔

(𝜇)

𝑛
(k)(𝑡𝑖−𝑡𝑗)

× [1 + coth
𝜔

(𝜇)

𝑛
(k)

2𝑘B𝑇
]𝜎

(𝑛,𝜇)

11
(k)

(69)

⟨𝑅 [𝛿𝑛
𝜇
(𝑖) 𝛿𝑛

𝜇
(𝑗)]⟩

=

i𝑎2

(2𝜋)

3

2

∑

𝑛=1

∫𝑑

2
𝑘𝑑𝜔eik⋅(Ri−Rj)−i𝜔(𝑡𝑖−𝑡𝑗)

(70)

×

𝜎

(𝑛,𝜇)

11
(k)

𝜔 − 𝜔

(𝜇)

𝑛 (k) + i𝛿
. (71)

In conclusion, the dynamical susceptibility 𝜒
𝜇
(k, 𝜔),

which is independent of Γ(𝜇) by construction, reads as

𝜒
𝜇
(k, 𝜔) = −F [⟨𝑅 [𝛿𝑛

𝜇
(𝑖) 𝛿𝑛

𝜇
(𝑗)]⟩]

=

16𝑡 [1 − 𝛼 (k)] 𝐶𝛼

𝜔

2
− (𝜔

(𝜇)
(k))2

,

(72)

where no summation is implied on the 𝜇 index. It is really
worth noticing the very good agreement between the results
we obtained within this framework for the charge and spin
dynamics of the Hubbard model and the related numerical
ones present in the literature (see [40]).

2.6. Self-Consistency. In this section, we will give a sketch of
the procedure used to calculate the Green’s function 𝐺(k, 𝜔).
The starting point is (19), where the two matrices 𝐼(k) and
𝜀(k) are computed by means of the expressions (23). The
energy matrix 𝜀(k) depends on three parameters: 𝜇, Δ, and
𝑝. To determine these parameters we use the following set of
algebra constraints:

𝑛 = 2 (1 − 𝐶
11
− 𝐶

22
) ,

Δ = 𝐶

𝛼

11
− 𝐶

𝛼

22
,

𝐶
12

= ⟨𝜉 (𝑖) 𝜂

†

(𝑖)⟩ = 0,

(73)

where 𝐶
𝑛𝑚

and 𝐶

𝛼

𝑛𝑚
are the time-independent correlation

functions 𝐶
𝑛𝑚

= ⟨𝜓
𝑛
(𝑖)𝜓

†

𝑚
(𝑖)⟩ and 𝐶

𝛼

𝑛𝑚
= ⟨𝜓

𝛼

𝑛
(𝑖)𝜓

†

𝑚
(𝑖)⟩.

To calculate Σ(k, 𝜔) we use the NCA; the results given in
Section 2.4 show that within this approximation Σ(k, 𝜔) is
expressed in terms of the fermionic 𝐺

𝑐𝑐
(k, 𝜔) [cf. (38)] and

of the bosonic 𝜒
𝜇
(k, 𝜔) [cf. (39)] propagators. The bosonic

propagator is calculated within the two-pole approximation,
using the expression (70). As shown in Section 2.5, 𝜒

𝜇
(k, 𝜔)

depends on both electronic correlation functions [see (63)],
which can be straightforwardly computed from 𝐺(k, 𝜔), and
bosonic correlation functions, one per each channel (charge
and spin), 𝑎

0
and 𝑎

3
.The latter are determined bymeans of the

local algebra constraints (67), where 𝑛 is the filling and 𝐷 is
the double occupancy, determined in terms of the electronic
correlation function as𝐷 = 𝑛/2 − 𝐶

22
.

According to this, the electronic Green’s function𝐺(k, 𝜔)
is computed through the self-consistency scheme depicted in
Figure 1: we first compute 𝐺0

(k, 𝜔) and 𝜒
𝜇
(k, 𝜔) in the two-

pole approximation, then Σ(k, 𝜔), and consequently 𝐺(k, 𝜔).
Finally, we check how much the fermionic parameters (𝜇, Δ,
and 𝑝) changed and decide whether to stop or to continue
by computing new 𝜒

𝜇
(k, 𝜔) andΣ(k, 𝜔) after𝐺(k, 𝜔). Usually,

to get 6 digits precision for fermionic parameters, we need 8
full cycles to reach self-consistency on a 3D grid of 128 × 128
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points in momentum space and 4096Matsubara frequencies.
Actually, many more cycles (almost twice) are needed at low
doping and low temperatures.

Summarizing, within the NCA and the two-pole approx-
imation for the computation of 𝜒

𝜇
(k, 𝜔) we have constructed

an analytical, completely self-consistent scheme of calcula-
tion of the electronic propagator𝐺

𝑐𝑐
(k, 𝜔) = F⟨𝑇[𝑐(𝑖)𝑐

†
(𝑗)]⟩,

where dynamical contributions of the self-energy Σ(k, 𝜔) are
included. All the internal parameters are self-consistently
calculated by means of algebra constraints [cf. (67)-(68)
and (73)]. No adjustable parameters or phenomenological
expressions are introduced.

3. Results

In the following, we analyze some electronic properties by
computing the spectral function

𝐴 (k, 𝜔) = −

1

𝜋

I [𝐺
𝑐𝑐
(k, 𝜔)] , (74)

the momentum distribution function per spin

𝑛 (k) = ∫𝑑𝜔𝑓F (𝜔)𝐴 (k, 𝜔) , (75)

and the density of states per spin

𝑁(𝜔) =

1

(2𝜋)

2
∫𝑑

2
𝑘𝐴 (k, 𝜔) , (76)

where 𝐺
𝑐𝑐
(k, 𝜔) = 𝐺

11
(k, 𝜔) + 𝐺

12
(k, 𝜔) + 𝐺

21
(k, 𝜔) +

𝐺
22
(k, 𝜔) is the electronic propagator and 𝑓F(𝜔) is the Fermi

function. We also study the electronic self-energy Σ
𝑐𝑐
(k, 𝜔),

which is defined through the equation

𝐺
𝑐𝑐
(k, 𝜔) = 1

𝜔 − 𝜖
0
(k) − Σ

𝑐𝑐
(k, 𝜔)

, (77)

where 𝜖
0
(k) = −𝜇 − 4𝑡𝛼(k) is the noninteracting dispersion.

Moreover, we define the quantity 𝑟(k) = 𝜖
0
(k) + Σ

󸀠

𝑐𝑐
(k, 𝜔 = 0)

that determines the Fermi surface locus inmomentum space,
𝑟(k) = 0, in a Fermi liquid, that is, when lim

𝜔→0
Σ

󸀠󸀠

𝑐𝑐
(k, 𝜔, 𝑇 =

0) ∝ 𝜔

2 and lim
𝑇→0

Σ

󸀠󸀠

𝑐𝑐
(k, 𝜔 = 0, 𝑇) ∝ 𝑇

2. The actual
Fermi surface (or its relic in a non-Fermi-liquid) is given
by the relative maxima of 𝐴(k, 𝜔 = 0), which takes into
account, at the same time and on equal footing, both the
real and the imaginary parts of the self-energy and is directly
related, within the sudden approximation and forgetting any
selection rules, to what ARPES effectively measures.

Finally, the spin-spin correlation function ⟨𝑛
𝑧
𝑛

𝛼

𝑧
⟩, the

pole𝜔(3)
(k = Q = (𝜋, 𝜋)) of the spin-spin propagator, and the

antiferromagnetic correlation length 𝜉 are discussed. Usually,
the latter is defined by supposing the following asymptotic
expression for the static susceptibility:

lim
k→Q

𝜒

(3)

(k, 0) =
𝜒

(3)
(Q, 0)

1 + 𝜉

2
|k −Q|

2
, (78)

where 𝜒(3)
(k, 0) = −𝐺

(3)
(k, 0). It is worth noting that in our

case (78) is not assumed, but it exactly holds [189].

3.1. Spectral Function andDispersion. According to its overall
relevance in thewhole analysis performed hereinafter, we first
discuss the electronic dispersion of the model under analysis
or, better, its relic in a strongly correlated system. In general,
the dispersion and its more or less anomalous features can
be inferred by looking at the maxima of the spectral function
𝐴(k, 𝜔). In Figures 2 and 3, the spectral function is shown, in
scale of grays (increasing fromwhite to black; red is for above-
scale values), along the principal directions (Γ = (0, 0) →

𝑀 = (𝜋, 𝜋), 𝑀 → 𝑋 = (𝜋, 0), 𝑋 → 𝑌 = (0, 𝜋) and 𝑌 → Γ)
for 𝑈 = 8, 𝑇 = 0.01 and (a) 𝑛 = 0.70, (b) 𝑛 = 0.78, (c)
𝑛 = 0.85, and (d) 𝑛 = 0.92 (𝑇 = 0.02). In Figure 2, the
whole range of frequencies with finite values of 𝐴(k, 𝜔) is
reported, while in Figure 3 a zoom in the proximity of the
chemical potential is shown.The light gray lines and uniform
areas are labeled with the values of the imaginary part of the
self-energy Σ

󸀠󸀠
(k, 𝜔) and give one of the most relevant keys

to interpret the characteristics of the dispersion. The dark
green lines in Figure 3 are just guides to the eye and indicate
the direction of the dispersion just before the visible kink
separating the black and the red areas of the dispersion.

The red areas, as they mark the relative maxima of
𝐴(k, 𝜔), can be considered as the best possible estimates for
the dispersion. In a non- (or weakly-) interacting system, the
dispersion would be a single, continuos, and (quite-) sharp
line representing some function 𝜀 (k) being the simple pole
of 𝐺

𝑐𝑐
(k, 𝜔). In this case (for a strongly correlated system),

instead, we can clearly see that the dispersion is well-defined
(red areas) only in some of the regions it crosses in the (k, 𝜔)
plane: the regions where Σ󸀠󸀠

(k, 𝜔) is zero or almost negligible.
In the crossed regionswhereΣ󸀠󸀠

(k, 𝜔) is instead finite,𝐴(k, 𝜔)
obviously assumes very low values, whichwould be extremely
difficult (actually almost impossible) to detect by ARPES.
Accordingly, ARPES would report only the red areas in the
picture. This fact is fundamental to understand and describe
the experimental findings regarding the Fermi surface in
the underdoped regime, as they will be discussed in the
next section, and to reconcile ARPES findings with those of
quantum oscillations measurements.

The two Hubbard subbands, separated by a gap of the
order 𝑈 and with a reduced bandwidth of order 4𝑡, are
clearly visible: the lower one (LHB) is partly occupied as
it is crossed by the chemical potential and the upper one
(UHB) is empty and very far from the chemical potential.
The lower subband systematically (for each value of doping)
loses significance close to Γ and to 𝑀, although this effect
is more and more pronounced on reducing doping. In both
cases (close to Γ and to 𝑀), 𝐴(k, 𝜔) loses weight as Σ󸀠󸀠

(k, 𝜔)
increases its own: this can be easily understood if we recall
that both 𝜒

0
(k, 𝜔) and 𝜒

3
(k, 𝜔) have a vanishing pole at

Γ (due to hydrodynamics) and that 𝜒
3
(k, 𝜔) is strongly

peaked at𝑀 due to the strong antiferromagnetic correlations
present in the system (see Section 3.6). The upper subband,
according to the complementary effect induced by the evident
shadow-bands appearance (signaled by the relative maxima
of Σ󸀠󸀠

(k, 𝜔) marked by 100 and the dark gray area inside the
gap) due again to the strong antiferromagnetic correlations
present in the system, displays awell-defined dispersion at𝑀,
at least for high enough doping, and practically no dispersion



12 Advances in Condensed Matter Physics

9
8
7
6
5
4
3
2
1
0

−1
−2
−3

Γ ΓS M X S Y

k

𝜔

A
(k
,𝜔
)

0.0

0.6

1.2

1.8

2.4

3.0

U = 8
n = 0.7

T = 0.01

Σ󳰀󳰀(k, 𝜔)

(a)

9
8
7
6
5
4
3
2
1
0

−1
−2
−3

Γ ΓS M X S Y

k

𝜔

A
(k
,𝜔
)

0.0

0.6

1.2

1.8

2.4

3.0

U = 8
n = 0.78

T = 0.01

Σ󳰀󳰀(k, 𝜔)

(b)

9
8
7
6
5
4
3
2
1
0

−1
−2
−3

Γ ΓS M X S Y

k

𝜔
A
(k
,𝜔
)

0.0

0.6

1.2

1.8

2.4

3.0

U = 8
n = 0.85

T = 0.01

Σ󳰀󳰀(k, 𝜔)

(c)

9
8
7
6
5
4
3
2
1
0

−1
−2
−3

Γ ΓS M X S Y

k

𝜔

A
(k
,𝜔
)

0.0

0.6

1.2

1.8

2.4

3.0

U = 8
n = 0.92

T = 0.02

Σ󳰀󳰀(k, 𝜔)

(d)

Figure 2: (Color online) Spectral function𝐴(k, 𝜔) along the principal directions (Γ = (0, 0) → 𝑀 = (𝜋, 𝜋),𝑀 → 𝑋 = (𝜋, 0),𝑋 → 𝑌 = (0, 𝜋)

and 𝑌 → Γ) for 𝑈 = 8, 𝑇 = 0.01 and (a) 𝑛 = 0.70, (b) 𝑛 = 0.78, (c) 𝑛 = 0.85, and (d) 𝑛 = 0.92 (𝑇 = 0.02).

at all close to Γ. For low doping, the great majority of the
upper subband weight is simply transferred to the lower
subband. The growth, on reducing doping, of the undefined-
dispersion regions close to Γ in the lower subband cuts down
its already reduced bandwidth of order 4𝑡 to values of the
order 𝐽 = 4𝑡

2
/𝑈 = 0.5𝑡, as one would expect for the disper-

sion of few holes in a strong antiferromagnetic background.
The shape of the dispersion is too compatible with this
scenario: the sequence of minima and maxima is compatible,
actually driven, by the doubling of the Brillouin zone induced
by the strong antiferromagnetic correlations, as well as the
dynamical generation of a 𝑡󸀠 diagonal hopping (absent in the
Hamiltonian currently under study) clearly signaled by the
more andmore, on reducing doping, pronounced warping of
the dispersion along the 𝑋 → 𝑌 direction (more evident in
Figure 3), whichwould be perfectly flat otherwise (for 𝑡󸀠 = 0).

Moving to the zooms (Figure 3), they show much more
clearly the systematic reduction of the bandwidth on reducing
doping, the doubling of the zone, the systematic increase of
the warping along 𝑋 → 𝑌 on reducing doping, and the
extreme flatness of the dispersion at 𝑋 coming from both
Γ and 𝑀. This latter feature is in very good agreement with
quantum Monte Carlo calculations (see [159] and references
therein) as well as with ARPES experiments [190], which
report a similar behavior in the overdoped region. Moreover,
they show that, in contrast with the scenario for a non-

(or weakly-) interacting system, where the doubling of the
zone happens with the 𝑋 → 𝑌 direction as pivot; here,
the doubling is confined to the region close to 𝑀. The
lower subband is completely filled at half-filling, while for an
ordinary Slater antiferromagnet the gap opens at half-filling
just on top of the van-Hove singularity along 𝑋 → 𝑌. In
addition, the effective, finite value of 𝑡󸀠 makes the dispersion
maximum close to 𝑆 higher than the one present along the
𝑀 → 𝑋 direction, opening the possibility for the appearance
of hole pockets close to 𝑆. Finally, it is now evident that the
warping of the dispersion along 𝑋 → 𝑌 will also induce
the presence of two maxima in the density of states: one due
to the van-Hove singularities at 𝑋 and 𝑌 and one due to
the maximum in the dispersion close to 𝑆. How deep is the
dip between these two maxima just depends on the number
of available well-defined (red) states in momentum present
between these two values of frequency. This will determine
the appearance of a more or less pronounced pseudogap in
the density of states, but let us come back to this after having
analyzed the region close to𝑀.

As a matter of fact, it is just the absence of spectral
weight in the region close to 𝑀 and, in particular and more
surprisingly, at the chemical potential (i.e., on the Fermi
surface, in contradiction with the Fermi-liquid picture), the
main and more relevant result of this analysis, it will deter-
mine almost all interesting and anomalous/unconventional
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Figure 3: (Color online) Spectral function 𝐴(k, 𝜔) close to the chemical potential (𝜔 = 0) along the principal directions (Γ = (0, 0) → 𝑀 =

(𝜋, 𝜋), 𝑀 → 𝑋 = (𝜋, 0), 𝑋 → 𝑌 = (0, 𝜋) and 𝑌 → Γ) for 𝑈 = 8, 𝑇 = 0.01 and (a) 𝑛 = 0.70, (b) 𝑛 = 0.78, (c) 𝑛 = 0.85, and (d) 𝑛 = 0.92

(𝑇 = 0.02).

features of the single-particle properties of the model. The
scenario emerging from this analysis can be relevant not
only for the understanding of the physics of the Hubbard
model and for the microscopical description of the cuprate
high-𝑇

𝑐
superconductors, but also for the drafting of a

general microscopic theory of strongly correlated systems.
The strong antiferromagnetic correlations (through Σ󸀠󸀠

(k, 𝜔),
which mainly follows 𝜒

3
(k, 𝜔)) cause a significative and

anomalous/unconventional loss of spectral weight around𝑀,
which induces in turn the deconstruction of the Fermi surface
(Section 3.2), the emergence of momentum selective non-
Fermi-liquid features (Sections 3.4 and 3.5), and the opening
of a well-developed (deep) pseudogap in the density of states
(Section 3.3).

Last, but not least, it is also remarkable the presence of
kinks in the dispersion in both the nodal (Γ → 𝑀) and the
antinodal (𝑋 → Γ) directions, as highlighted by the dark
green guidelines, in qualitative agreement with some ARPES
experiments [82]. Such a phenomenon clearly signals the
coupling of the electrons to a bosonic mode. In this scenario,
the mode is clearly magnetic in nature. The frequency of
the kink, with respect to the chemical potential, reduces
systematically and quite drastically on reducing doping, fol-
lowing the behavior of the pole of 𝜒

3
(k, 𝜔) (see Section 3.6).

Combining the presence of kinks and the strong reduction

of spectral weight below them, we see the appearance of
waterfalls, in particular along the antinodal (𝑋 → Γ)
direction, as found in some ARPES experiments [82]. Finally,
the extension of the flat region in the dispersion around
the antinodal points (𝑋 and 𝑌), that is, at the van-Hove
points, increases systematically on decreasing doping. This
clearly signals the transfer of spectral weight from the Fermi
surface, which is depleted by the strong antiferromagnetic
fluctuations, which are also responsible for the remarkable
flatness of the band edge.

Beforemoving to the next section, it is worth noticing that
similar results for the single-particle excitation spectrum (flat
bands close to 𝑋, weight transfer from the LHB to the UHB
at𝑀, and splitting of the band close to 𝑋, . . .) were obtained
within the self-consistent projection operator method [28,
29], the operator projection method [30–32], and within a
Mori-like approach by Plakida and coworkers [7, 9].

3.2. Spectral Function and Fermi Surface. Focusing on the
value of the spectral function at the chemical potential,
𝐴(k, 𝜔 = 0), we can discuss the closest concept to Fermi
surface available in a strongly correlated system. In Figure 4,
𝐴(k, 𝜔 = 0) is plotted as a function of the momentum k in
a quarter of the Brillouin zone for 𝑈 = 8 and four different
couples of values of temperature and filling: (a) 𝑛 = 0.7 and
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Figure 4: (Color online) Spectral function at the chemical potential 𝐴(k, 𝜔 = 0) as a function of momentum k for 𝑈 = 8, 𝑇 = 0.01 and (a)
𝑛 = 0.70, (b) 𝑛 = 0.78, (c) 𝑛 = 0.85, and (d) 𝑛 = 0.92 (𝑇 = 0.02).
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𝑇 = 0.01, (b) 𝑛 = 0.78 and 𝑇 = 0.01, (c) 𝑛 = 0.85 and
𝑇 = 0.01, and (d) 𝑛 = 0.92 and 𝑇 = 0.02. The Fermi surface,
in agreement with the interpretation of the ARPES mea-
surements within the sudden approximation, can be defined
as the locus in momentum space of the relative maxima of
𝐴(k, 𝜔 = 0). Such a definition opens up the possibility of not
only explainingARPESmeasurements, but also going beyond
them and their finite instrumental resolution and sensitivity
with the aim at filling the gap with other kinds of measure-
ments, in particular quantum oscillations ones, which seems
to report results in disagreement, up to dichotomy in some
cases, with the scenario depicted by ARPES.

For each value of the filling reported, we can easily
distinguish two walls/arcs; for 𝑛 = 0.92, they somewhat join.
First, let us focus on the arc with the larger (by far) intensities;
given the current sensitivities, this is the only one, among the
two, possibly visible to ARPES. At 𝑛 = 0.7 (see Figure 4(a)),
the 3Dperspective allows to better appreciate the difference in
the intensities of the relative maxima of 𝐴(k, 𝜔 = 0) between
the region close to the main diagonal (𝑀 → 𝑋), where the
signal is weaker, and the regions close to the main axes (Γ →

𝑋 and Γ → 𝑌), where the signal is stronger; this behavior
has been also reported by ARPES experiments [82, 190] as
well as the electron-like nature of the Fermi surface [190].
On decreasing doping, this trend reverses, passing through
𝑛 = 0.78, where the intensities almost match, and up to
𝑛 = 0.92, where the region in proximity of 𝑆 is the only
one with an appreciable signal. The less-intense (by far) arc,
reported in [7] too, is the relic of a shadow band, as can
be clearly seen in Figure 3, and, consequently, never changes
its curvature, in contrast to what happens to the other arc,
which is subject to the crossing of the van Hove singularity
(𝑛 ≅ 0.82) instead. Although the ratio between themaximum
values of the intensities at the two arcs never goes below
two (see Figure 6(b)), there is an evident decrease of the
maximum value of the intensity at the larger-intensity arc on
decreasing doping, which clearly signals an overall increase of
the intensity and/or of the effectiveness (in terms of capability
of affecting the relevant quasi-particles, which are those at the
Fermi surface) of the correlations.

Moving to a 2D perspective (see Figure 5), we can add
three ingredients to our discussion that can help us better
understand the evolution with doping of the Fermi surface:
(i) the 𝑛(k) = 0.5 locus (solid line), that is, the Fermi surface
if the system would be noninteracting; (ii) the 𝑟(k) = 0 locus
(dashed line), that is, the Fermi surface if the system would
be a Fermi liquid or somewhat close to it conceptually; (iii)
the values (grey lines and labels) of the imaginary part of the
self-energy at the chemical potentialΣ󸀠󸀠

𝑐𝑐
(k, 𝜔 = 0) (notice that

𝑇 ̸= 0). Combining these three ingredients with the positions
and intensities of the the relative maxima of 𝐴(k, 𝜔 = 0), we
can try to better understand what these latter signify and to
classify the behavior of the system on changing doping. At
𝑛 = 0.7 (see Figure 5(a)), the positions of the two arcs are
exactly matching 𝑟(k) = 0 lines; this will stay valid at each
value of the filling reported, with a fine, but very relevant,
distinction at 𝑛 = 0.92. This occurrence makes our definition
of Fermi surface robust, but also versatile as it permits to
go beyond Fermi liquid picture without contradicting this

latter. The almost perfect coincidence, for the higher value
of doping reported, 𝑛 = 0.7, of the 𝑛(k) = 0.5 line with the
larger-intensity arc clearly asserts that we are dealing with a
very-weakly-interacting Fermi metal. Σ󸀠󸀠

𝑐𝑐
(k, 𝜔 = 0) is quite

large close to 𝑀 (see Figure 3(a)) and eats up the weight of
the second arc, which becomes a ghost band more than a
shadow one.The antiferromagnetic correlations are definitely
finite (see Section 3.6) and, consequently, lead to the doubling
of the zone, but not strong enough to affect the behavior
of the ordinary quasiparticles safely living at the ordinary
Fermi surface. Decreasing the doping, we can witness a first
topological transition from a Fermi surface closed around
Γ (electron-like, hole-like in cuprates language) to a Fermi
surface closed around𝑀 (hole-like, electron-like in cuprates
language) at 𝑛 ≅ 0.82, where the chemical potential
crosses the van Hove singularity (see Figure 3). The chemical
potential presents an inflection point at this doping (not
shown), which allowed us to determine its value with great
accuracy. In proximity of the antinodal points (𝑋 and 𝑌), a
net discrepancy between the position of the relative maxima
of 𝐴(k, 𝜔 = 0) and the locus 𝑛(k) = 0.5 becomes more
andmore evident on decreasing doping (see Figures 5(b) and
5(c)). This occurrence does not only allow the topological
transition, which is absent for the 𝑛(k) = 0.5 locus that
reaches the antidiagonal (𝑋 → 𝑌) at half-filling in agreement
with the Luttinger theorem, but also accounts for the apparent
broadening of the relative maxima of 𝐴(k, 𝜔 = 0) close
to the antinodal points (𝑋 and 𝑌). The broadening is due
to the small, but finite, value of Σ󸀠󸀠

𝑐𝑐
(k, 𝜔 = 0) in those

momentum regions (see Figures 3(b) and 3(c)), signaling the
net increase of the correlation strength and, accordingly, the
impossibility of describing the system in this regime as a
conventional non- (or weakly-) interacting system within a
Fermi-liquid scenario or its ordinary extensions for ordered
phases. What is really interesting and goes beyond the actual
problem under analysis (cuprates: 2D Hubbard model) is the
emergence of such features only in well-defined regions in
momentum space.This selectiveness in momentum is quite a
new feature in condensed matter physics and its understand-
ing and description require quite new theoretical approaches.
In this system, almost independently from their effective
strength, the correlations play a so fundamental role to come
to shape and determine qualitatively the response of the
system.Accordingly, any attempt to treat correlationswithout
taking into account the level of entanglement between all
degrees of freedom present in the system is bound to fail or
at least to miss the most relevant features.

Let us come to themost interesting result. At 𝑛 = 0.92, the
relative maxima of 𝐴(k, 𝜔 = 0) detach also from the 𝑟(k) = 0

locus, at least partially, opening a completely new scenario.
𝑟(k) = 0 defines a pocket (close, but absolutely not identical,
read below, to that of an antiferromagnet), while the relative
maxima of𝐴(k, 𝜔 = 0) feature the very same pocket together
with quite broad, but still well-defined,wings closingwith one
half of the pocket (the most intense one) what can be safely
considered the relic of a large Fermi surface.This is the second
and most surprising topological transition occurring to the
actual Fermi surface: the two arcs, clearly visible for all other
values of the filling, join and instead of closing just a pocket, as
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Figure 5: (Color online) Spectral function at the chemical potential 𝐴(k, 𝜔 = 0) as a function of momentum k for 𝑈 = 8, 𝑇 = 0.01 and
(a) 𝑛 = 0.70, (b) 𝑛 = 0.78, (c) 𝑛 = 0.85, and (d) 𝑛 = 0.92 (𝑇 = 0.02). The solid line marks the locus 𝑛(k) = 0.5, the dashed line marks the
locus 𝑟(k) = 0, the gray lines are labeled with the values of Σ󸀠󸀠

𝑐𝑐
(k, 𝜔 = 0), and the dotted line is a guide to the eye and marks the reduced

(antiferromagnetic) Brillouin zone.

one would expect on the basis of the conventional theory for
an antiferromagnet—here mimed by 𝑟(k) = 0 locus, develop
(or keep) a completely independent branch. The actual
Fermi surface is neither a pocket nor a large Fermi surface;
for a more expressive representation, see Figure 4(d). This
very unexpected result can be connected to the dichotomy
between those experiments (e.g., ARPES) pointing to a small
and those ones (e.g., quantum oscillations) pointing to a
large Fermi surface.This result can be understood by looking
once more at the dispersion for this value of the filling (see

Figure 3(d)): the difference in height, induced by the effective
finite value of 𝑡󸀠, which increases with decreasing doping,
between the twohighestmaxima in the dispersion—one close
to 𝑆 and the other along the 𝑀 → 𝑋 direction—makes the
latter to cross the chemical potential for larger values of the
doping than the first, but given the significative broadening
of the dispersion, even when the center mass of the second
leaves the Fermi surface (disappearing from 𝑟(k) = 0

locus), its shoulders are still active and well-identifiable at the
chemical potential—that is on the actual Fermi surface.
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Figure 6: (Color online) (a) Density of states𝑁(𝜔) as a function of frequency 𝜔 for𝑈 = 8, (black squares) 𝑛 = 0.7 and 𝑇 = 0.01, (red circles)
𝑛 = 0.78 and 𝑇 = 0.01, (blue up triangles) 𝑛 = 0.85 and 𝑇 = 0.01, and (green down triangles) 𝑛 = 0.92 and 𝑇 = 0.02. (b) Spectral function
in the proximity of the chemical potential 𝐴(k, 𝜔 ∼ 0) at (black squares) k = 𝑆 = (𝜋/2, 𝜋/2), (red circles) 𝑆 (in the text), and (blue triangles)
𝑋 = (𝜋, 0) for 𝑈 = 8, 𝑛 = 0.92, and 𝑇 = 0.02.

The pocket is too far from being conventional. It is clearly
evident in Figure 5(d) that there are two distinct halves
of the pocket: one with very high intensity pinned at 𝑆

(again the only possibly visible to ARPES) and another with
very low intensity (visible only to theoreticians and some
quantum oscillations experiments).This is our interpretation
for the Fermi arcs reported by many ARPES experiments
[82, 93] and unaccountable for any ordinary theory relaying
on the Fermi liquid picture, though being modified by the
presence of an incipient spin or charge ordering. Obviously,
looking only at the Fermi arc (as ARPES is forced to do),
the Fermi surface looks ill defined as it does not enclose a
definite region of momentum space, but having access also
to the other half of the pocket, such a problem is greatly
alleviated.Thepoint is that the antiferromagnetic fluctuations
are so strong to destroy the coherence of the quasiparticles
in that region of momentum space as similarly reported
within the DMFT + Σ approach [163–167] and a Mori-
like approach by Plakida and coworkers [7, 9]. Moreover,
we will see that (see Section 3.5) the phantom half is not
simply lower in intensity because it belongs to a shadow
band depleted by a finite imaginary part of the self-energy
(see Figure 5(d)) but that it lives in a region of momentum
where the imaginary part of the self-energy shows clear
signs of non-Fermi-liquid behavior. The lack of next-nearest
hopping terms (i.e., 𝑡󸀠 and 𝑡󸀠󸀠) in the chosen Hamiltonian (1),
although they are evidently generated dynamically, does not

allow us to perform a quantitative comparison between our
results and the experimental ones, which refers to a specific
material characterized by a specific set of hoppings. This
also explains why our Fermi arc is pinned at 𝑆 and occupies
the outer reduced Brillouin zone, while many experimental
results that report a Fermi arc occupying the inner reduced
Brillouin zone. Actually, the pinning (with respect to doping
within the underdoped region) of the center of mass of the
ARPES-visible Fermi arc has been reported also fromARPES
experiments [191].

3.3. Density of States and Pseudogap. The other main issue
in the underdoped regime of cuprates superconductors is
the presence of a quite strong depletion in the electronic
density of states, known as pseudogap. In Figure 6(a), we
report the density of states𝑁(𝜔) for 𝑈 = 8 and four couples
of values of filling and temperature: 𝑛 = 0.7 and 𝑇 =

0.01, 𝑛 = 0.78 and 𝑇 = 0.01, 𝑛 = 0.85 and 𝑇 = 0.01,
and 𝑛 = 0.92 and 𝑇 = 0.02, in the frequency region in
proximity of the chemical potential. As a reference, we also
report, in Figure 6(b), the spectral function in proximity of
the chemical potential 𝐴(k, 𝜔 ∼ 0) at k = 𝑆 = (𝜋/2, 𝜋/2),
k = 𝑆which lies where the phantom half of the pocket touches
the main diagonal Γ → 𝑀 (i.e., where the dispersion cuts
the main diagonal Γ → 𝑀 closer to 𝑀), and k = 𝑋 =

(𝜋, 0) for 𝑈 = 8, 𝑛 = 0.92, and 𝑇 = 0.02. As it can be
clearly seen in Figure 6(a), the density of states presents two
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Figure 7: (Color online)Momentum distribution function 𝑛(k) for𝑈 = 8 and 𝑛 = 0.7, 0.75, 0.8, 𝑛 = 0.85 (𝑇 = 0.01), and 𝑛 = 0.92 (𝑇 = 0.02):
(a) along the principal directions (Γ = (0, 0) → 𝑀 = (𝜋, 𝜋),𝑀 → 𝑋 = (𝜋, 0), 𝑋 → 𝑌 = (0, 𝜋), and 𝑌 → Γ); (b) along the principal diagonal
(Γ → 𝑀).

maxima separated by a dip, which plays the role of pseudogap
in this scenario. Its presence is due to the warping in the
dispersion along the 𝑋 → 𝑌 direction (see Figure 3), which
induces the presence of the two maxima (one due to the
van-Hove singularity at 𝑋 and one due to the maximum in
the dispersion close to 𝑆—see Figure 6(b)), and to the loss
of states, within this window in frequency, in the region in
momentum close to𝑀, as discussed in detail in the previous
sections. As a measure of how much weight is lost because of
the finite value of the imaginary part of the self-energy in the
region in momentum close to𝑀, one can look at the striking
difference between the value of 𝐴(𝑆, 𝜔 = 0) in comparison to
that of 𝐴(𝑆, 𝜔 = 0); see Figure 6(b). On reducing the doping,
there is an evident transfer of spectral weight between the
two maxima; in particular, the weight is transferred from the
top of the dispersion close to 𝑆 to the antinodal point 𝑋,
where the van Hove singularity resides. At the lowest doping
(𝑛 = 0.92), a well-developed pseudogap is visible below
the chemical potential and will clearly affect all measurable
properties of the system. For this doping, we do not observe
any divergence ofΣ󸀠

𝑐𝑐
(k, 𝜔 = 0) in contrast to what is reported

in [192] where this feature is presented as the ultimate reason
for the opening of the pseudogap. In our scenario, the
pseudogap is just the result of the transfer of weight from
the single-particle density of states to the two-particle one
related to the (antiferro) magnetic excitations developing in
the system on decreasing doping at low temperatures (see
Section 3.6).

It is worthmentioning that an analogous doping behavior
of the pseudogap has been found by the DMFT+Σ approach
[163–167], a Mori-like approach by Plakida and coworkers [7,
9], and the cluster perturbation theory [86, 87, 175, 176].

3.4. Momentum Distribution Function. To analyze a possible
crossover from a Fermi liquid to a non-Fermi-liquid behavior
in certain regions of momentum space, at small dopings
and low temperatures, and to better characterize the pocket
forming on the Fermi surface at the lowest reported doping,
we study the electronic momentum distribution function
𝑛(k)per spin along the principal directions (Γ → 𝑀,𝑀 → 𝑋,
𝑋 → 𝑌 and 𝑌 → Γ) and report it in Figure 7, for 𝑈 = 8

and 𝑛 = 0.7, 0.75, 0.8, and 0.85 (𝑇 = 0.01), and for 𝑛 =

0.92 (𝑇 = 0.02). Figure 7(b) reports a zoom along the main
diagonal (Γ → 𝑀). At the highest studied doping (𝑛 =

0.7), 𝑛(k) shows the usual features of a quasinoninteracting
system, except for one single, but very important feature:
the dip along the main diagonal (Γ → 𝑀) signaling the
presence of a shadow band due to the weak, but anyway finite,
antiferromagnetic correlations (see Section 3.6), as already
discussed many times hereinbefore. The quite small height
of the secondary jumps along 𝑆 → 𝑀 and 𝑀 → 𝑋

directions (with respect to the height of the main jumps
along Γ → 𝑆 and 𝑌 → Γ directions) gives a measure
of the relevance of this feature in the overall picture: not
really much relevant, except at 𝑛 = 0.92 where it changes
qualitatively. On increasing filling (reducing doping), the
features related to the shadow band do not change much
their positions and intensity, while the features related to the
ordinary band change their positions as expected in order
to accommodate (i.e., to activate states in momentum for)
the increasing number of particles. Finally, at 𝑛 = 0.92, the
two sets of features close a pocket. At this final stage, what is
very relevant, as it is very unconventional, is the evident and
remarkable difference in behavior between the main jump
along the Γ → 𝑆 direction and the secondary jump along
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Figure 8: (Color online) The momentum distribution function 𝑛(k) for 𝑛 = 0.92, 𝑇 = 0.01, and 𝑈 = 8.

the 𝑆 → 𝑀 direction (see Figure 7(b)): the former stays quite
sharp (just a bit skewed by the slightly higher temperature)
as the Fermi liquid theory requires, the latter instead loses
completely its sharpness, much more than what would be
reasonable because of the finite value of the temperature as
it can be deduced by the comparison with the behavior of
the main jump. Such a strong qualitative modification is the
evidence of a non-Fermi-liquid-like kind of behavior, but
only combining this occurrence with a detailed study of the
frequency and temperature dependence of the imaginary part
of the self-energy in the very same region of momentum
space (see Section 3.5), we will be able to make a definitive
statement about this.

In Figure 8, we try to summarize the scenario in the
extreme case (𝑛 = 0.92, 𝑇 = 0.01, and 𝑈 = 8), where all the
anomalous features are present and well formed, by reporting
the full 2D scan of the momentum distribution function 𝑛(k)
in a quarter of the Brillouin zone. We can clearly see now the
pocket with its center along the main diagonal and the lower
border touching the border of the magnetic zone at exactly
𝑆 = (𝜋/2, 𝜋/2). Actually, the 2D prospective makes more
evident that there is a second underlying Fermi surface that
corresponds to the ordinary paramagnetic one for this filling
𝑛 = 0.92 (large and hole-like) and touching the border of the
zone between 𝑀 = (𝜋, 𝜋) and 𝑋 = (𝜋, 0) (𝑌 = (0, 𝜋)). This
corresponds to the very small jump in Figure 9(a) along the
same direction. It is worthmentioning that a similar behavior
of the momentum distribution function has been found by
means of a Mori-like approach by Plakida and coworkers
[7, 9].

In Figure 9, we study the dependence of the momentum
distribution function 𝑛(k) on the temperature 𝑇 (a) and the
on-site Coulomb repulsion 𝑈 (b) by keeping the filling 𝑛

fixed at themost interesting value: 0.92. At high temperatures

(in particular, down to 𝑇 = 0.4), the behavior of 𝑛(k) is
that of a weakly correlated paramagnet (no pocket along the
𝑆 → 𝑀 direction, no warping along the 𝑋 → 𝑌 direction).
For lower temperatures, the pocket develops along the 𝑆 →

𝑀 direction and the signal along the 𝑋 → 𝑌 direction is
no more constant, signaling the dynamical generation of a
diagonal hopping term 𝑡

󸀠, connecting same-spin sites in a
newly developed antiferromagnetic background unwilling to
be disturbed. In fact, such a behavior is what one expects
when quite strong magnetic fluctuations develop in the
system and corresponds to a well-defined tendency towards
an antiferromagnetic phase (see Section 3.6). The 𝑀 point
becomes another minimum in the dispersion in competition
with Γ and the dispersion should feature amaximumbetween
them in correspondence to the center of the pocket. The
whole bending of the dispersion confines the van Hove
singularity below the Fermi surface in an open pocket (it
closes out of the actually chosen Brillouin zone) visible in the
momentum distribution as a new quite broadmaximum at𝑋
and𝑌.The dependence on𝑈 shows that, for 𝑛 = 0.92 and𝑇 =

0.01, our solution presents quite strong antiferromagnetic
fluctuations for every finite value of the Coulomb repulsion,
although the two kinds of pockets discussed just above are
not well formed for values of 𝑈 less than 𝑈 = 3 ÷ 4.

3.5. Self-Energy. To obtain clear-cut pieces of information
about the lifetime of the quasiparticles generated by the very
strong interactions within this scenario, but even more to
understand if it is still reasonable or not to discuss in terms
of quasiparticles at all (i.e., if this Fermi-liquid-like concept
still holds for each region of the momentum and frequency
space), we analyze the imaginary part of the self-energy
Σ

󸀠󸀠
(k, 𝜔) as a function of both frequency and temperature.

In the top panels of Figure 10, we plot the imaginary part of
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Figure 9: (Color online) The momentum distribution function 𝑛(k) along the main directions (Γ = (0, 0) → 𝑀 = (𝜋, 𝜋) → 𝑋 = (𝜋, 0) →

𝑌 = (0, 𝜋) → Γ = (0, 0)) for different values of temperature 𝑇 (a) and on-site Coulomb repulsion 𝑈 (b) at 𝑛 = 0.92.

the self-energy Σ󸀠󸀠
(k, 𝜔), together with its real part Σ󸀠

(k, 𝜔),
the spectral function 𝐴(k, 𝜔), and the noninteracting disper-
sion 𝜀

0
(k, 𝜔) as functions of the frequency at the nodal point

k = 𝑆 (a) and at its companion position on the phantom half
of the pocket k = 𝑆 (b) along the main diagonal Γ → 𝑀.
In both cases, although k = 𝑆 is not visible in the picture
but is very clear for k = 𝑆, the position of the relative/local
maximum of 𝐴(k, 𝜔) coincides with the chemical potential
(i.e., on the Fermi surface) and it is determined by the sum of
𝜀
0
(k, 𝜔 = 0) and Σ

󸀠
(k, 𝜔 = 0) as expected (i.e., both points

belong to the 𝑟(k) = 0 locus). What is very interesting and
somewhat unexpected and peculiar is that at the nodal point a
parabolic-like (i.e., a Fermi-liquid-like) behavior of Σ󸀠󸀠

(k, 𝜔)
is clearly apparent, whereas, at k = 𝑆, the dependence of
Σ

󸀠󸀠
(k, 𝜔) on frequency shows a predominance of a linear

term giving a definite proof that this region in momentum
space is interested to a kind of physics very different from
what can be considered even by far Fermi-liquid-like.

In order to remove any possible doubt regarding the
non-Fermi-liquid-like nature of the physics going on at the
phantom half of the pocket, in the bottom panels of Figure 10,
the imaginary part of the self-energy at the Fermi surface
Σ

󸀠󸀠
(k, 𝜔 = 0) is reported as a function of the temperature at

the nodal point k = 𝑆 and at its companion k = 𝑆. The blue
straight line in the right panel is just a guide to the eye. We
clearly see that, in this case too, although it requires to move
from a𝑇 to a𝑇2 representation (from (a) to (b)), the behavior
of Σ

󸀠󸀠
(k, 𝜔 = 0) shows rather different behaviors at the

selected points. In particular, the temperature dependence of
Σ

󸀠󸀠
(k, 𝜔 = 0) is exactly parabolic (i.e., exactly Fermi-liquid)

at the nodal point, while it exhibits a predominance of linear
and logarithmic contributions at 𝑆. This is one of the most
relevant results of this analysis and characterizes this scenario
with respect to the others present in the literature.

3.6. Spin Dynamics. Finally, to analyze the way the system
approaches the antiferromagnetic phase on decreasing dop-
ing and temperature and increasing correlation strength, we
report the behavior of the nearest neighbor spin-spin corre-
lation function ⟨𝑛

𝑧
𝑛

𝛼

𝑧
⟩, of the antiferromagnetic correlation

length 𝜉 and of the pole 𝜔(3)
(Q) (as defined in Section 3) as

functions of filling 𝑛, temperature 𝑇, and on-site Coulomb
repulsion 𝑈. In Figures 11, 12, and 13, respectively, such
quantities are presented for values in the ranges 0.7 < 𝑛 <

0.92, 0.01 < 𝑇 < 1 and 0.1 < 𝑈 < 8. The choice for the
extremal values of low doping 𝑛 = 0.92, low temperature 𝑇 =

0.01, and strong on-site Coulomb repulsion 𝑈 = 8 has been
made as for these values we find that all investigated single-
particle properties (spectral density function, Fermi surface,
dispersion relation, density of states, momentum distribution
function, self-energy, . . .) present anomalous behaviors. The
nearest-neighbor spin-spin correlation function ⟨𝑛

𝑧
𝑛

𝛼

𝑧
⟩ is

always antiferromagnetic in character (i.e., negative) and
increases its absolute value on decreasing doping and temper-
ature 𝑇 and on increasing𝑈 as expected.The signature of the
exchange scale of energy 𝐽 ≈ 4𝑡

2
/𝑈 ≈ 0.5 in the temperature

dependence as a significative enhancement in the slope is
rather evident. The analysis of the filling dependence unveils
quite strong correlations at the higher value of doping too:
𝜉 is always larger than one for all values of fillings showing
that, at 𝑇 = 0.01 and 𝑈 = 8, we should expect antiferro-
magnetic fluctuations in the overdoped regime too as also
claimed by recent experiments [193–195]. In the overdoped
region, the antiferromagnetic fluctuations are quite less well
defined, in terms of magnon/paramagnon width, than in the
underdoped region [196–198] and than what is found in the
current two-pole approximation. In fact, a proper description
of the paramagnons dynamics would definitely require the
inclusion of a proper self-energy term in the charge and



Advances in Condensed Matter Physics 21

−1.0 −0.5 0.0 0.5 1.0

𝜔

A(k, 𝜔)
Σ󳰀(k, 𝜔)
Σ󳰀󳰀(k, 𝜔)
𝜀0(k, 𝜔)

n = 0.92
T = 0.02
U = 8
k = S

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(a)

−1.0 −0.5 0.0 0.5 1.0

𝜔

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

A(k, 𝜔)
Σ󳰀(k, 𝜔)
Σ󳰀󳰀(k, 𝜔)
𝜀0(k, 𝜔)

n = 0.92
T = 0.02
U = 8
k = S

(b)

0.00 0.01 0.02 0.03 0.04 0.05
−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

T

Σ
󳰀󳰀
(k
,𝜔

=
0)

n = 0.92

U = 8
k = S
k = S

(c)

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Σ
󳰀󳰀
(k
,𝜔

=
0)

0.000 0.001 0.002

T2

n = 0.92

U = 8
k = S
k = S

(d)

Figure 10: (Color online) Spectral density function 𝐴 (k, 𝜔), real (󸀠) and imaginary (

󸀠󸀠
) parts of the self-energy Σ (k, 𝜔), noninteracting

dispersion 𝜀
0
(k, 𝜔) as functions of frequency at (a) k = 𝑆 and (b) k = 𝑆 for 𝑛 = 0.92, 𝑇 = 0.02, and 𝑈 = 8. ((c) and (d)) Imaginary part of

the self-energy Σ󸀠󸀠
(k, 𝜔 = 0) as a function of temperature at (squares) k = 𝑆 and (circles) k = 𝑆 for 𝑛 = 0.92 and 𝑈 = 8. The blue line is just a

guide to the eye.

spin propagators too (in preparation). Coming back to results
(Figure 12), 𝜉 overcomes one lattice constant at temperatures
below 𝐽 and tends to diverge for low enough temperatures.
On the other hand, 𝜉 seems to saturate for low enough values

of doping. 𝜉 equals one between 𝑈 = 3 and 𝑈 = 4 and
again rapidly increases for large enough values of𝑈. The pole
𝜔

(3)
(Q) decreases on decreasing doping 𝑛 and temperature

𝑇 and on increasing 𝑈. In particular, it is very sensitive to
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the variations in temperature 𝑇 and in on-site Coulomb
repulsion 𝑈, which make the mode softer and softer clearly
showing the definite tendency towards an antiferromagnetic
instability.

4. Conclusions and Perspectives

We have reviewed and systematized the theory and the
results for the single-particle and magnetic-response proper-
ties microscopically derived for the 2D Hubbard model, as
minimal model for high-𝑇

𝑐
cuprate superconductors, within

the Composite Operator Method with the residual self-
energy computed in the noncrossing approximation (NCA).

Among the several scenarios proposed for the pseudogap
origin [119], COM definitely falls into the AF scenario (the
pseudogap is a precursor of the AF long-range order) [199–
201] as well as the two-particle self-consistent approach
(TPSC) [86, 87, 160], the DMFT + Σ approach [163–167], and
a Mori-like approach by Plakida and coworkers [6, 7, 9].

In the limit of strong on-site Coulomb repulsion and low
doping, such results show the emergence of a pseudogap
scenario, the deconstruction of the Fermi surface in ill-
defined open arcs, and the clear signatures of non-Fermi-
liquid features similarly to what has been found by ARPES
experiments [82] and not only [84]. In particular, we have
shown that a very low-intensity signal develops around 𝑀

point andmoves towards 𝑆 nodal point on decreasing doping
coming to close, together with the ordinary Fermi surface
boundary, a pocket in the underdoped region. Whenever the
pocket develops, it is just the remarkable difference in the
intensity of the signal between the two halves of the pocket to
make a Fermi arc apparent. As the doping decreases further,
the arc shrinks into a point at 𝑆 exactly at half-fillingmaking it
possible to reconcile the large-small Fermi surface dichotomy
once the Fermi surface is defined as the relativemaxima of the
spectral function and the relic of the ordinary paramagnetic
Fermi surface are also taken into account. The pseudogap
develops since a region inmomentum (and frequency) with a
very low-intensity signal (it corresponds to the phantom half
of the pocket at the chemical potential and to the shadow
band out of it) is present between the van Hove singularity
and the quite flat band edge (quite flat after the doubling of
the Brillouin zone due to the very strong antiferromagnetic
fluctuations). On changing doping, a spectral weight transfer
takes place in the density of states between the two maxima
corresponding to the van Hove singularity and the band
edge, respectively. A crossover between a Fermi liquid and a
non-Fermi-liquid can be clearly observed in the momentum
distribution function (definitely not featuring a sharp jump
on the phantom half of the pocket) and in the imaginary
part of the self-energy (featuring linear and logarithmic terms
in the frequency and temperature dependence instead of
the ordinary parabolic term) on decreasing doping at low
temperatures and large interaction strength. This crossover
exactly corresponds to the process of deconstruction of the
Fermi surface. We also report kinks in the dispersion along
nodal and antinodal directions. In order to properly interpret
the behavior of the spectral density function and of the
momentum distribution function, we have also analyzed the

characteristic features in the spin-spin correlation function,
the antiferromagnetic correlation length, and the pole of the
spin-spin propagator. As expected, on reducing doping or
temperature and on increasing 𝑈, the correlations become
stronger and stronger. The exchange scale of energy 𝐽 is
clearly visible in the temperature dependence of the spin-
spin correlation function and drives the overall behavior of
the magnetic response. These results also demonstrate that
a properly microscopically derived susceptibility can give
results practically identical or, at least, very similar to those
attainable by means of phenomenological susceptibilities
especially tailored to describe experiments.This is even more
remarkable since COMbrings the benefice of amicroscopical
determination of the temperature and filling dependencies of
the correlation length.

Many other issues should be addressed in the next future:
to improve the Hamiltonian description by adding and fine-
tuning longer-range hopping terms in order to quantitatively
and not only qualitatively describe specific materials, to
verify the stability and the modifications of this scenario
with respect to the inclusion of a residual self-energy in
the calculation of the charge and spin propagators closing a
fully self-consistent cycle, to investigate the charge and spin
responses in the full range of momentum and frequency rele-
vant to these systems searching for hourglasses, thresholds,
and all other peculiar features experimentally observed, to
investigate the superconducting phase and establish that it is
nature and relationship with the anomalous features of the
normal phases, to analyze in detail the transition/crossover
between the quasiordinary antiferromagnetic phase at half-
filling and the underdoped regime.
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of the Hubbard model through cluster perturbation theory,”
Physical Review Letters, vol. 84, pp. 522–525, 2000.
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