9 research outputs found

    Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico)

    Get PDF
    Petrophysical and rock mechanical properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining, are commonly used for the interpretation of geophysical data and the parameterization of numerical models and as thus are the basis for economic reservoir assessment. However, detailed information regarding these properties for each target horizon are often scarce, inconsistent or spread over multiple publications. Thus, subsurface models are often populated with generalized or assumed values resulting in high uncertainty. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as basis for a profound reservoir assessment and modelling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans Mexican Volcanic Belt - the Acoculco and Los Humeros caldera - were selected as demonstration sites. The Los Humeros geothermal system is steam dominated and has been exploited since the 1990’s with 65 wellbores (28 still producing). With temperatures above 380 °C, the system is characterized as a super-hot geothermal system. The geothermal system in Acoculco (presently consisting of two exploration wells) is characterized by temperatures of approximately 300 °C at a depth of about 2 km. It contains almost no fluids, even though a well-developed fracture network exists in the study area. Therefore, the system serves as a demonstration site for the development of an enhanced geothermal system. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 340 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed ‘fossil systems’ in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field were obtained. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, poisson ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 131 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created comprising 34 parameters determined on more than 2160 plugs. More than 31,000 data points were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.V1.

    Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico)

    Get PDF
    Petrophysical and rock mechanical properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining, are commonly used for the interpretation of geophysical data and the parameterization of numerical models and as thus are the basis for economic reservoir assessment. However, detailed information regarding these properties for each target horizon are often scarce, inconsistent or spread over multiple publications. Thus, subsurface models are often populated with generalized or assumed values resulting in high uncertainty. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as basis for a profound reservoir assessment and modelling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans Mexican Volcanic Belt - the Acoculco and Los Humeros caldera - were selected as demonstration sites. The Los Humeros geothermal system is steam dominated and has been exploited since the 1990’s with 65 wellbores (28 still producing). With temperatures above 380 °C, the system is characterized as a super-hot geothermal system. The geothermal system in Acoculco (presently consisting of two exploration wells) is characterized by temperatures of approximately 300 °C at a depth of about 2 km. It contains almost no fluids, even though a well-developed fracture network exists in the study area. Therefore, the system serves as a demonstration site for the development of an enhanced geothermal system. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 340 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed ‘fossil systems’ in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field were obtained. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, poisson ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 131 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created comprising 34 parameters determined on more than 2160 plugs. More than 31,000 data points were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.V1.

    Eruptive chronology of the Acoculco caldera complex – A resurgent caldera in the eastern Trans-Mexican Volcanic Belt (MĂ©xico)

    No full text
    The Acoculco caldera complex (ACC) is located in the eastern part of the Trans-Mexican Volcanic Belt in the northern part of the State of Puebla. The complex sits at the intersection of two regional fault systems with NE-SW and NW-SE orientations. The ACC was built atop Cretaceous limestones, the ZacatĂĄn basaltic plateau of unknown age, early Miocene domes (~12.7–10.98 Ma), and Pliocene lava domes (~3.9–3 Ma). Detailed field mapping and stratigraphy studies complemented by 40Ar/39Ar and 14C dating allowed the division of the ACC volcanic succession into 30 volcanic units. Based on the new results and previous studies, the ACC eruptive chronology was grouped in four eruptive phases: syn-caldera, early post-caldera, late post-caldera, and extra-caldera. Inception of the ACC volcanism began around 2.7 Ma with the dispersion of an andesitic ignimbrite followed by the collapse of the magma chamber roof as attested by the presence of a lithic breccia in isolated parts of the caldera rim. The collapse produced a 18 × 16 km caldera depression which was partly filled by the ignimbrite (total volume of ~127 km3) followed by the establishment of an intracaldera lake of unknown total extension. Early post-caldera collapse activity (2.6–2.1 Ma) was restricted within the caldera producing 27 km3 of lava flows and domes dominantly of basaltic trachyandesite to basaltic composition. Late post-caldera collapse activity (2.0-<0.016 Ma) migrated dominantly to the caldera rim and periphery emplacing 90 km3 of magma as rhyolitic domes, lava flows, scoria cones, and two younger ignimbrites. The 1.2 Ma Encimadas ignimbrite (26 km3) was vented through the eastern margin of the caldera and dispersed to the northeast, and the 0.6–0.8 Ma Tecoloquillo ignimbrite and dome (11 km3) erupted from the southwestern margin of the caldera. The most recent eruption of this phase was vented close to the southeastern caldera rim producing the Cuatzitzingo (<16,710 ± 50 years BP) scoria cone. Extra-caldera activity (2.4–0.19 Ma) of the Apan–Tezontepec volcanic field produced scoria cones and lava flows of basaltic trachyandesite to basaltic andesite composition that are interbedded with the products of the caldera complex. Aeromagnetic data further constrains the edge of the caldera rim and is consistent with the presence of at least four intrusive bodies at depths of >1 km hosted in the Cretaceous limestones. These bodies might represent a series of horizontal mafic intrusions located at different depths that provide the energy that maintains the Acoculco geothermal system active.This study was partially funded by the Centro Mexicano de InnovaciĂłn en EnergĂ­a GeotĂ©rmica (CeMIE-Geo) project P15 and GEMex 4.4. to J.L. MacĂ­as. J. Marti is grateful for the MECD, Spain (PRX16/00056) grant.Peer reviewe

    Tectonic-magmatic-hydrothermal interactions in a hot dry rock geothermal system: The role of the transfer and normal faults in the Acoculco caldera (Mexico)

    No full text
    In the Acoculco caldera (hot dry rock system) two geothermal boreholes were planned to intersect fracture systems in the carbonate basement. Even though the caldera is located in an area of active deformation with high rainfall, a scarce permeability was recognized. To shed light on this apparent mismatch, we investigate the area by integrating a structural and kinematic dataset on faults and fractures with the volcanological data. The results highlighted two main coeval fault systems, NW- and NE striking respectively, and two associated minor N-S and E-W striking sets, affecting the area of the Acoculco caldera and controlling its volcanic evolution. The kinematic analysis on fault-slip surfaces demonstrated that the NW-striking faults are characterized by two superposed movements: the first comprises right strike-slip to right lateral oblique-slip, while the second is dominantly normal. In contrast, the NE-striking structures display only dominantly normal movements. We explain the kinematic evolution by two recurring events, determined by the interplay between regional extension and uplift: when a crustal extension was dominant in the region (first kinematic event), the NW- and NE-trending structures played the role of transfer and normal faults, respectively; in contrast, when uplift predominated (second kinematic event) both the pre-existing NW- and NE-striking faults acted with normal movements. The location of eruptive centers is controlled by the permeability along the regional faults and their step-over zones. A closer analysis carried out in the surroundings of the geothermal boreholes suggests that deformation migrated northwards, and that fractures are sealed in this sector of Acoculco, thus strongly reducing permeability. In this view, the most promising areas for potential permeability at depth might occur northwards, beyond of the Acoculco caldera, and along the NW-trending structures. In conclusion, the fault kinematics is influenced by periods of increased partial melting of the lithosphere, the latter determining anomalous heat flux and uplift. This process interacts with the fluid pathways that are in turn controlled by the tectonic segmentation, and this is a new model to explain the tectonic-magmatic and hydrothermal interaction of this region.publishedVersio

    Geology of the late Pleistocene Tres VĂ­rgenes Volcanic Complex, Baja California Sur (MĂ©xico)

    No full text
    The geological map of the Tres VĂ­rgenes Volcanic Complex (TVVC) Baja California Sur, MĂ©xico consists of three northeast-southwest aligned stratovolcanoes named from older to younger, El Viejo, El Azufre, and La Virgen. The map (scale 1:20,000) comprises an area of 856 km2 edited on an ArcMap data set. The map compiles previous studies combined with new mapping and stratigraphy supported by 5 new 230Th/U geochronology in zircons. The TVVC sits on top of Cretaceous granite, Cenozoic volcaniclastics, the Esperanza basalt (7.64 Ma), and the Aguajito ignimbrite (1.17 Ma). The TVVC commenced its activity around 300 ka by constructing El Viejo volcano, followed by El Azufre volcano (∌173–128 ka), la Virgen scoria cones (∌128–112 ka), and La Virgen stratovolcano (∌112–22 ka). The La Virgen volcano emplaced the La Virgen rhyolitic tephra (∌31 ka), and the Upper Andesite lavas (∌22 ka)

    Geology of the late Pliocene - Pleistocene Acoculco caldera complex, eastern Trans-Mexican Volcanic Belt (Mexico)

    No full text
    We present a new 1:80,000-scale geologic map of the Acoculco caldera (Ac) located between the states of Puebla and Hidalgo in eastern MĂ©xico. The map, encompassing an area of 856 km2, is grounded on an ArcMap data set and is supported by nine new 40Ar/39Ar dates. The caldera lies upon Cretaceous limestones and Miocene to Pliocene volcanic rocks (13–3 Ma). The caldera consists of 31 lithostatrigraphic units formed between 2.7 and 0.06 Ma that include a wide variety of volcanic landforms (cinder cones, lava domes). The caldera has a semi-circular shape (18–16 km) bounded by the Atotonilco scarp to the north, the NW–SE Manzanito fault to the west, and scattered vents to the east and southern parts. The distribution of the Acoculco ignimbrite, the lithic breccia, and lacustrine sediments define the caldera ring fault. Late Pleistocene activity and pervasive hydrothermal alteration suggest a high geothermal potential in the area. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of MapsThis study was funded by Grant 207032 of the Centro Mexicano de InovaciĂłn en EnergĂ­a GeotĂ©rmica (CeMIE Geo) project P15 to J.L. MacĂ­as. JM is grateful for the MECD (PRX16/00056) grant.Peer reviewe
    corecore