14 research outputs found

    Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins

    Get PDF
    Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS) which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA) from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement), we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene

    Identification in Pea Seed Mitochondria of a Late-Embryogenesis Abundant Protein Able to Protect Enzymes from Drying

    Get PDF
    Late-embryogenesis abundant (LEA) proteins are hydrophilic proteins that accumulate to a high level in desiccation-tolerant tissues and are thus prominent in seeds. They are expected to play a protective role during dehydration; however, functional evidence is scarce. We identified a LEA protein of group 3 (PsLEAm) that was localized within the matrix space of pea (Pisum sativum) seed mitochondria. PsLEAm revealed typical LEA features such as high hydrophilicity and repeated motifs, except for the N-terminal transit peptide. Most of the highly charged protein was predicted to fold into amphiphilic α-helixes. PsLEAm was expressed during late seed development and remained in the dry seed and throughout germination. Application of the stress hormone abscisic acid was found to reinduce the expression of PsLEAm transcripts during germination. PsLEAm could not be detected in vegetative tissues; however, its expression could be reinduced in leaves by severe water stress. The recombinant PsLEAm was shown to protect two mitochondrial matrix enzymes, fumarase and rhodanese, during drying in an in vitro assay. The overall results constitute, to our knowledge, the first characterization of a LEA protein in mitochondria and experimental evidence for a beneficial role of a LEA protein with respect to proteins during desiccation

    Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia.

    Get PDF
    International audienceActively respiring animal and plant tissues experience hypoxia because of mitochondrial O(2) consumption. Controlling oxygen balance is a critical issue that involves in mammals hypoxia-inducible factor (HIF) mediated transcriptional regulation, cytochrome oxidase (COX) subunit adjustment and nitric oxide (NO) as a mediator in vasodilatation and oxygen homeostasis. In plants, NO, mainly derived from nitrite, is also an important signalling molecule. We describe here a mechanism by which mitochondrial respiration is adjusted to prevent a tissue to reach anoxia. During pea seed germination, the internal atmosphere was strongly hypoxic due to very active mitochondrial respiration. There was no sign of fermentation, suggesting a down-regulation of O(2) consumption near anoxia. Mitochondria were found to finely regulate their surrounding O(2) level through a nitrite-dependent NO production, which was ascertained using electron paramagnetic resonance (EPR) spin trapping of NO within membranes. At low O(2), nitrite is reduced into NO, likely at complex III, and in turn reversibly inhibits COX, provoking a rise to a higher steady state level of oxygen. Since NO can be re-oxidized into nitrite chemically or by COX, a nitrite-NO pool is maintained, preventing mitochondrial anoxia. Such an evolutionarily conserved mechanism should have an important role for oxygen homeostasis in tissues undergoing hypoxia
    corecore