19 research outputs found

    Steep-slope Devices for Power Efficient Adiabatic Logic Circuits

    Get PDF
    Reducing supply voltage is an effective way to reduce power consumption, however, it greatly reduces CMOS circuits speed. This translates in limitations on how low the supply voltage can be reduced in many applications due to frequency constraints. In particular, in the context of low voltage adiabatic circuits, another well-known technique to save power, it is not possible to obtain satisfactory power-speed trade-offs. Tunnel field-effect transistors (TFETs) have been shown to outperforms CMOS at low supply voltage in static logic implementations, operation due to their steep subthreshold slope (SS), and have potential for combining low voltage and adiabatic. To the best of our knowledge, the adiabatic circuit topologies reported with TFETs do not take into account the problems associated with their inverse current due to their intrinsic p-i-n diode. In this paper, we propose a solution to this problem, demonstrating that the proposed modification allows to significantly improving the performance in terms of power/energy savings compared to the original ones, especially at medium and low frequencies. In addition, we have evaluated the relative advantages of the proposed TFET adiabatic circuits, both at gate and architecture levels, with respect to their static implementations, demonstrating that these are greater than for FinFET transistor designs. Index Terms—Adiabatic logic, TunnelPeer reviewe

    Holding Dissapearance in RTD-based Quantizers

    Get PDF
    ABSTRACT Multiple-valued Logic (MVL) circuits are one of the most attractive applications of the Monostable-to-Multistable transition Logic (MML), and they are on the basis of advanced circuits for communications. The operation of such quantizer has two steps: sampling and holding. Once the quantizer samples the signal, it must maintain the sampled value even if the input changes. However, holding property is not inherent to MML circuit topologies. This paper analyses the case of an MML ternary inverter used as a quantizer, and determines the relations that circuit representative parameters must verify to avoid this malfunction

    Learning algorithms for oscillatory neural networks as associative memory for pattern recognition

    Get PDF
    Alternative paradigms to the von Neumann computing scheme are currently arousing huge interest. Oscillatory neural networks (ONNs) using emerging phase-change materials like VO2 constitute an energy-efficient, massively parallel, brain-inspired, in-memory computing approach. The encoding of information in the phase pattern of frequency-locked, weakly coupled oscillators makes it possible to exploit their rich non-linear dynamics and their synchronization phenomena for computing. A single fully connected ONN layer can implement an auto-associative memory comparable to that of a Hopfield network, hence Hebbian learning rule is the most widely adopted method for configuring ONNs for such applications, despite its well-known limitations. An extensive amount of literature is available about learning in Hopfield networks, with information regarding many different learning algorithms that perform better than the Hebbian rule. However, not all of these algorithms are useful for ONN training due to the constraints imposed by their physical implementation. This paper evaluates different learning methods with respect to their suitability for ONNs. It proposes a new approach, which is compared against previous works. The proposed method has been shown to produce competitive results in terms of pattern recognition accuracy with reduced precision in synaptic weights, and to be suitable for online learning

    A CMOS-compatible oscillation-based VO<sub>2</sub> Ising machine solver

    Get PDF
    Phase-encoded oscillating neural networks offer compelling advantages over metal-oxide-semiconductor-based technology for tackling complex optimization problems, with promising potential for ultralow power consumption and exceptionally rapid computational performance. In this work, we investigate the ability of these networks to solve optimization problems belonging to the nondeterministic polynomial time complexity class using nanoscale vanadium-dioxide-based oscillators integrated onto a Silicon platform. Specifically, we demonstrate how the dynamic behavior of coupled vanadium dioxide devices can effectively solve combinatorial optimization problems, including Graph Coloring, Max-cut, and Max-3SAT problems. The electrical mappings of these problems are derived from the equivalent Ising Hamiltonian formulation to design circuits with up to nine crossbar vanadium dioxide oscillators. Using sub-harmonic injection locking techniques, we binarize the solution space provided by the oscillators and demonstrate that graphs with high connection density (η &gt; 0.4) converge more easily towards the optimal solution due to the small spectral radius of the problem’s equivalent adjacency matrix. Our findings indicate that these systems achieve stability within 25 oscillation cycles and exhibit power efficiency and potential for scaling that surpasses available commercial options and other technologies under study. These results pave the way for accelerated parallel computing enabled by large-scale networks of interconnected oscillators.</p
    corecore