1,114 research outputs found

    Multi-objective design of robust flight control systems

    Get PDF
    The aim of this work is to demonstrate the capabilities of evolutionary methods in the design of robust controllers for unstable fighter aircraft in the framework of H1 control theory. A multi–objective evolutionary algorithm is used to find the controller gains that minimize a weighted combination of the infinite–norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements). After considering a single operating point for a level flight trim condition of a F-16 fighter aircraft model, two different approaches will then be considered to extend the domain of validity of the control law: 1) the controller is designed for different operating points and gain scheduling is adopted; 2) a single control law is designed for all the considered operating points by multiobjective minimisation. The two approaches will be analysed and compared in terms of efficacy and required human and computational resources

    Multi-objective design of robust flight control systems

    Get PDF
    A multi–objective evolutionary algorithm is used in the framework of H1 control theory to find the controller gains that minimize a weighted combination of the infinite–norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements). After considering a single operating point for a level flight trim condition of a F-16 fighter aircraft model, two different approaches will then be considered to extend the domain of validity of the control law: 1) the controller is designed for different operating points and gain scheduling is adopted; 2) a single control law is designed for all the considered operating points by multiobjective minimisation. The two approaches are analyzed and compared in terms of effectiveness of the design method and resulting closed loop performance of the system

    Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft

    Design and Development of the Engine Unit for a Twin-Rotor Unmanned Aerial Vehicle

    Get PDF
    Advanced computer-aided technologies played a crucial role in the design of an unconventional Uninhabited Aerial Vehicle (UAV), developed at the Turin Technical University and the University of Rome “La Sapienza”. The engine unit of the vehicle is made of a complex system of three two stroke piston engines coupled with two counter-rotating three-bladed rotors, controlled by rotary PWM servos. The focus of the present paper lies on the enabling technologies exploited in the framework of activities aimed at designing a suitable and reliable engine system, capable of performing the complex tasks required for operating the proposed rotorcraft. The synergic use of advanced computational tools for estimating the aerodynamic performance of the vehicle, solid modeling for mechanical components design, and rapid prototyping techniques for control system logic synthesis and implementation will be presented.

    Interactions in Mobile Sound and Music Computing

    Get PDF
    none4siopenGeronazzo M.; Avanzini F.; Fontana F.; Serafin S.Geronazzo, M.; Avanzini, F.; Fontana, F.; Serafin, S

    Stima di feature spettrali di HRTF mediante modelli antropometrici non lineari per la resa di audio 3D

    Get PDF
    La relazione tra i parametri antropometrici di un soggetto umano e le feature tipiche delle Head-Related Transfer Function (HRTF), in particolare quelle collegabili al padiglione auricolare (o pinna), non \ue8 compresa appieno. In questo articolo applichiamo tecniche di elaborazione del segnale per estrarre le frequenze del primo notch dovuto alla pinna (conosciuto come N1) nella porzione frontale del piano mediano e costruiamo un modello basato su una rete neurale artificiale che relazioni le frequenze stesse a 13 diversi parametri antropometrici della pinna, alcuni dei quali dipendono dall'elevazione della sorgente sonora. I risultati mostrano una corrispondenza incoraggiante tra l'antropometria e le feature spettrali, la quale conferma la possibilit\ue0 di predire la frequenza centrale del notch a partire da una semplice fotografia dell'orecchio

    A hepatic scaffold from decellularized liver tissue: Food for thought

    Get PDF
    Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected
    corecore