A multi–objective evolutionary algorithm is used in the framework of H1 control theory
to find the controller gains that minimize a weighted combination of the infinite–norm
of the sensitivity function (for disturbance attenuation requirements) and complementary
sensitivity function (for robust stability requirements). After considering a single operating
point for a level flight trim condition of a F-16 fighter aircraft model, two different
approaches will then be considered to extend the domain of validity of the control law: 1)
the controller is designed for different operating points and gain scheduling is adopted; 2)
a single control law is designed for all the considered operating points by multiobjective
minimisation. The two approaches are analyzed and compared in terms of effectiveness of
the design method and resulting closed loop performance of the system