3 research outputs found
Sustainable enzymatic treatment of organic waste in a framework of circular economy
Enzymatic treatment of food and vegetable waste (FVW) is an eco-friendly approach for producing industrially relevant value-added products. This review describes the sources, activities and potential applications of crucial enzymes in FVW valorization. The specific roles of amylase, cellulase, xylanase, ligninase, protease, pectinase, tannase, lipase and zymase enzymes were explained. The exhaustive list of value-added products that could be produced from FVW is presented. FVW valorization through enzymatic and whole-cell enzymatic valorization was compared. The note on global firms specialized in enzyme production reiterates the economic importance of enzymatic treatment. This review provides information on choosing an efficient enzymatic FVW treatment strategy, such as nanoenzyme and cross-linked based enzyme immobilization, to make the process viable, sustainable and cheaper. Finally, the importance of life cycle assessment of enzymatic valorization of FVW was impressed to prove this approach is a better option to shift from a linear to a circular economy
Emerging innovations for sustainable production of bioethanol and other mercantile products from circular economy perspective
Biogenic municipal solid waste (BMSW) and food waste (FW) with high energy density are ready to tap renewable resources for industrial scale ethanol refinery foreseen for establishing bio-based society. Circular economy has occupied limelight in the domain of renewable energy and sustainable chemicals production. The present review highlights the importance of BMSW/FW as newer feed reserves that can cater as parent molecules for an array of high-visibility industrial products along with bioethanol upon implementing a judicious closed-cascade mass-flow mechanism enabling ultimate feed and waste stream valorisation. Though these organics are attractive resources their true potential for energy production has not been quantified yet owing to their heterogeneous composition and associated technical challenges thus pushing waste refinery and industrial symbiosis concepts to backseat. To accelerate this industrial vision, the novel bioprocessing strategies for enhanced and low-cost production of bioethanol from BMSW/FW along with other commercially imperative product portfolio have been discussed. © 2022 Elsevier Lt