21 research outputs found

    Norme Minimale sur le Compléxifié d'un Espace de Hilbert Réel

    No full text
    Let \Cal H_{\Bbb R} be a real Hilbert space and let \Cal H_{\Bbb C} be the complexification of \Cal H_{\Bbb R}. The first part of this paper treats the problem of the existence of the minimal norm ℓ~\tilde\ell on \Cal H_{\Bbb C} such that % \align & \tilde\ell(z)\le\|z\|_{\Cal H_{\Bbb C}}\m\n \hbox{for}\m z\in\Cal H_{\Bbb C} \\ & \tilde\ell(x)=\|x\|_{\Cal H_{\Bbb R}}\m\n \hbox{for}\m x\in\Cal H_{\Bbb R}. \endalign % We prove the following theorem : a)\m The minimal norme ℓ~\tilde\ell exists in \Cal H_{\Bbb C}. b)\m Let D⊂CND\subset\Bbb C^N be a bounded, convex, balanced domain. There exists a maximal bounded convex, balanced domain D~⊂CN\tilde D\subset\Bbb C^N such that % \tilde D\supset D,\m\n \tilde D\cap\Bbb R^N=D\cap\Bbb R^N. % c)\m Let \Cal H_{\Bbb C}=\Bbb C^N, then the minimal norm ℓ~\tilde\ell is the supporting function of the unit closed Lie ball in CN\Bbb C^N. (a) and b) extend a result of K. T. Hahn and Peter Plug) where \Cal H_{\Bbb R}=\Bbb R^N and DD is the unit euclidean ball in \Cal C^N. The second part of the paper gives a geometrical interpretation of the minimal norm ℓ~\tilde\ell in \Cal H_{\Bbb C}. If \Cal N is a norm in CN\Bbb C^N, log \Cal N(z) is plurisubharmonic function. The final part of the paper studies the plurisubharmonic functions VV in CN\Bbb C^N such that ∀k∈C\forall k\in\Bbb C, V(kz)=∣k∣V(z)V(kz)=|k|V(z), V(z)≤∥z∥V(z)\le\|z\| for z∈CNz\in\Bbb C^N, V(x)=∥x∥V(x)=\|x\| for x∈RNx\in\Bbb R^N, ∥z∥\|z\| is euclidean norm in CN\Bbb C^N

    Quelques applications des fonctionelles analytiques

    No full text

    Norme Minimale sur le Compléxifié d\u27un Espace de Hilbert Réel

    Get PDF
    Let \Cal H_{\Bbb R} be a real Hilbert space and let \Cal H_{\Bbb C} be the complexification of \Cal H_{\Bbb R}. The first part of this paper treats the problem of the existence of the minimal norm ℓ~\tilde\ell on \Cal H_{\Bbb C} such that % \align & \tilde\ell(z)\le\|z\|_{\Cal H_{\Bbb C}}\m\ \hbox{for}\m z\in\Cal H_{\Bbb C} \\ & \tilde\ell(x)=\|x\|_{\Cal H_{\Bbb R}}\m\ \hbox{for}\m x\in\Cal H_{\Bbb R}. \endalign % We prove the following theorem : a)\m The minimal norme ℓ~\tilde\ell exists in \Cal H_{\Bbb C}. b)\m Let D⊂CND\subset\Bbb C^N be a bounded, convex, balanced domain. There exists a maximal bounded convex, balanced domain D~⊂CN\tilde D\subset\Bbb C^N such that % \tilde D\supset D,\m\ \tilde D\cap\Bbb R^N=D\cap\Bbb R^N. % c)\m Let \Cal H_{\Bbb C}=\Bbb C^N, then the minimal norm ℓ~\tilde\ell is the supporting function of the unit closed Lie ball in CN\Bbb C^N. (a) and b) extend a result of K. T. Hahn and Peter Plug) where \Cal H_{\Bbb R}=\Bbb R^N and DD is the unit euclidean ball in \Cal C^N. The second part of the paper gives a geometrical interpretation of the minimal norm ℓ~\tilde\ell in \Cal H_{\Bbb C}. If \Cal N is a norm in CN\Bbb C^N, log \Cal N(z) is plurisubharmonic function. The final part of the paper studies the plurisubharmonic functions VV in CN\Bbb C^N such that ∀k∈C\forall k\in\Bbb C, V(kz)=∣k∣V(z)V(kz)=|k|V(z), V(z)≤∥z∥V(z)\le\|z\| for z∈CNz\in\Bbb C^N, V(x)=∥x∥V(x)=\|x\| for x∈RNx\in\Bbb R^N, ∥z∥\|z\| is euclidean norm in CN\Bbb C^N

    Norme Minimale sur le Compléxifié d'un Espace de Hilbert Réel

    No full text

    Formes linéaires dépendant harmoniquement d'un paramètre

    No full text

    Une caractérisation des quadriques hermitiennes dans Cn

    No full text
    corecore