25 research outputs found
Absence of quantum-confined Stark effect in GaN quantum disks embedded in (Al,Ga)N nanowires grown by molecular beam epitaxy
Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light
emitting diodes could potentially be overcome by utilizing nanowire
heterostructures, exhibiting high structural perfection and improved light
extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire
ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The
nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire
segments essential for efficient light extraction. These quantum disks are
found to exhibit intense emission at unexpectedly high energies, namely,
significantly above the GaN bandgap, and almost independent of the disk
thickness. An in-depth investigation of the actual structure and composition of
the nanowires reveals a spontaneously formed Al gradient both along and across
the nanowire, resulting in a complex core/shell structure with an Al deficient
core and an Al rich shell with continuously varying Al content along the entire
length of the (Al,Ga)N segment. This compositional change along the nanowire
growth axis induces a polarization doping of the shell that results in a
degenerate electron gas in the disk, thus screening the built-in electric
fields. The high carrier density not only results in the unexpectedly high
transition energies, but also in radiative lifetimes depending only weakly on
temperature, leading to a comparatively high internal quantum efficiency of the
GaN quantum disks up to room temperature.Comment: This document is the unedited Author's version of a Submitted Work
that was subsequently accepted for publication in Nano Letters (2019),
copyright (C) American Chemical Society after peer review. To access the
final edited and published work see
https://doi.org/10.1021/acs.nanolett.9b01521, the supporting information is
available (free of charge) under the same lin
Incorporation of europium into gan nanowires by ion implantation
Rare earth (RE)-doped GaN nanowires (NWs), combining the well-defined and controllable optical emission lines of trivalent RE ions with the high crystalline quality, versatility, and small dimension of the NW host, are promising building blocks for future nanoscale devices in optoelectronics and quantum technologies. Europium doping of GaN NWs was performed by ion implantation, and structural and optical properties were assessed in comparison to thin film reference samples. Despite some surface degradation for high implantation fluences, the NW core remains of high crystalline quality with lower concentrations of extended defects than observed in ion-implanted thin films. Strain introduced by implantation defects is efficiently relaxed in NWs and the measured deformation stays much below that in thin films implanted in the same conditions. Optical activation is achieved for all samples after annealing, and while optical centers are similar in all samples, Eu^3+ emission from NW samples is shown to be less affected by residual implantation damage than for the case of thin films. The incorporation of Eu in GaN NWs was further investigated by nano-cathodoluminescence and X-ray absorption spectroscopy (XAS). Maps of the Eu-emission intensity within a single NW agree well with the Eu-distribution predicted by Monte Carlo simulations, suggesting that no pronounced Eu-diffusion takes place. XAS shows that 70-80% of Eu is found in the 3+ charge state while 20-30% is 2+ attributed to residual implantation defects. A similar local environment was found for Eu in NWs and thin films: for low fluences, Eu is mainly incorporated on substitutional Ga-sites, while for high fluences XAS points at the formation of a local EuN-like next neighbor structure. The results reveal the high potential of ion implantation as a processing tool at the nanoscale
Growth and Structural Characterization of Self-Nucleated III-Nitride Nanowires
International audienc
Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy
International audienc
Toward Quantitative Measurements of Piezoelectricity in III-N Semiconductor Nanowires
International audiencePiezoelectric semiconductor III-Nitride nanostructures have received increasing interest as an alternative material for energy harvesters, sensors, and self-sustainable electronics, demanding well-clarification of their piezoelectric behavior. Despite the feasibility of piezoresponse force microscopy (PFM) to resolve piezo-responses at the nanoscale, several difficulties arise when the measurements are performed on low piezo-coefficient materials due to various artifacts. This work shows that semi-quantitative PFM on low piezo-coefficient III-Nitrides can be achieved in high-aspect-ratio nanostructures such as nanowires or nanorods. For conventional bulks and thin films, accurate determination of their piezoresponses is limited because of clamping and bending effects which can occur simultaneously during PFM measurements. While the clamping effect only reduces the piezoresponse amplitude, the bending motion either increases or decreases this amplitude and can also rotate the phase by 180°. Improved electric field distribution in nanowires minimizes both artifacts, allowing correct determinations of crystal polarities and piezo-coefficients. In contrast to the reports in the literature, we do not observe giant piezoelectricity in III-N nanowires with a diameter in the range of 30-80 nm. This work provides an access to fundamental parameters for developing III-N based piezoelectric nano-devices
A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures
International audienc