156 research outputs found

    Discovery and validation of serum glycoprotein biomarkers for high grade serous ovarian cancer

    Get PDF
    Purpose: This study aimed to identify serum glycoprotein biomarkers for early detection of high-grade serous ovarian cancer (HGSOC), the most common and aggressive histotype of ovarian cancer./ Experimental design: The glycoproteomics pipeline lectin magnetic bead array (LeMBA)-mass spectrometry (MS) was used in age-matched case-control serum samples. Clinical samples collected at diagnosis were divided into discovery (n = 30) and validation (n = 98) sets. We also analysed a set of preclinical sera (n = 30) collected prior to HGSOC diagnosis in the UK Collaborative Trial of Ovarian Cancer Screening./ Results: A 7-lectin LeMBA-MS/MS discovery screen shortlisted 59 candidate proteins and three lectins. Validation analysis using 3-lectin LeMBA-multiple reaction monitoring (MRM) confirmed elevated A1AT, AACT, CO9, HPT and ITIH3 and reduced A2MG, ALS, IBP3 and PON1 glycoforms in HGSOC. The best performing multimarker signature had 87.7% area under the receiver operating curve, 90.7% specificity and 70.4% sensitivity for distinguishing HGSOC from benign and healthy groups. In the preclinical set, CO9, ITIH3 and A2MG glycoforms were altered in samples collected 11.1 ± 5.1 months prior to HGSOC diagnosis, suggesting potential for early detection./ Conclusions and clinical relevance: Our findings provide evidence of candidate early HGSOC serum glycoprotein biomarkers, laying the foundation for further study in larger cohorts

    MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

    Get PDF
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3′-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3′-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3′-untranslated regions are thus uncommon in ovarian cancer

    Ovarian cancer risk, ALDH2 polymorphism and alcohol drinking: Asian data from the Ovarian Cancer Association Consortium

    Get PDF
    The aldehyde dehydrogenase 2 (ALDH2) polymorphism rs671 (Glu504Lys) causes ALDH2 inactivation and adverse acetaldehyde exposure among Asians, but little is known of the association between alcohol consumption and rs671 and ovarian cancer (OvCa) in Asians. We conducted a pooled analysis of Asian ancestry participants in the Ovarian Cancer Association Consortium. We included seven case-control studies and one cohort study comprising 460 invasive OvCa cases, 37 borderline mucinous OvCa and 1274 controls of Asian descent with information on recent alcohol consumption. Pooled odds ratios (OR) with 95% confidence intervals (CI) for OvCa risk associated with alcohol consumption, rs671 and their interaction were estimated using logistic regression models adjusted for potential confounders. No significant association was observed for daily alcohol intake with invasive OvCa (OR comparing any consumption to none = 0.83; 95% CI = 0.58-1.18) or with individual histotypes. A significant decreased risk was seen for carriers of one or both Lys alleles of rs671 for invasive mucinous OvCa (OR = 0.44; 95% CI = 0.20-0.97) and for invasive and borderline mucinous tumors combined (OR = 0.48; 95% CI = 0.26-0.89). No significant interaction was observed between alcohol consumption and rs671 genotypes. In conclusion, self-reported alcohol consumption at the quantities estimated was not associated with OvCa risk among Asians. Because the rs671 Lys allele causes ALDH2 inactivation leading to increased acetaldehyde exposure, the observed inverse genetic association with mucinous ovarian cancer is inferred to mean that alcohol intake may be a risk factor for this histotype. This association will require replication in a larger sample

    High levels of genomic aberrations in serous ovarian cancers are associated with better survival

    Get PDF
    Martin K Oehler is a member of the Australian Ovarian Cancer Study GroupGenomic instability and copy number alterations in cancer are generally associated with poor prognosis; however, recent studies have suggested that extreme levels of genomic aberrations may be beneficial for the survival outcome for patients with specific tumour types. We investigated the extent of genomic instability in predominantly high-grade serous ovarian cancers (SOC) using two independent datasets, generated in Norway (n = 74) and Australia (n = 70), respectively. Genomic instability was quantified by the Total Aberration Index (TAI), a measure of the abundance and genomic size of copy number changes in a tumour. In the Norwegian cohort, patients with TAI above the median revealed significantly prolonged overall survival (p<0.001) and progression-free survival (p<0.05). In the Australian cohort, patients with above median TAI showed prolonged overall survival (p<0.05) and moderately, but not significantly, prolonged progression-free survival. Results were confirmed by univariate and multivariate Cox regression analyses with TAI as a continuous variable. Our results provide further evidence supporting an association between high level of genomic instability and prolonged survival of high-grade SOC patients, possibly as disturbed genome integrity may lead to increased sensitivity to chemotherapeutic agents.Lars O. Baumbusch, Åslaug Helland, Yun Wang, Knut Liestøl, Marci E. Schaner, Ruth Holm, Dariush Etemadmoghadam, Kathryn Alsop, Pat Brown, Australian Ovarian Cancer Study Group, Gillian Mitchell, Sian Fereday, Anna DeFazio, David D. L. Bowtell, Gunnar B. Kristensen, Ole Christian Lingjærde, Anne-Lise Børresen-Dal

    High-throughput amplicon-based copy number detection of 11 genes in formalin-fixed paraffin-embedded ovarian tumour samples by MLPA-seq

    Get PDF
    The Clinical and Scientific Collaborators of the AOCS group include Martin Oehler.Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity.Olga Kondrashova, Clare J. Love, Sebastian Lunke, Arthur L. Hsu, Australian Ovarian Cancer Study, AOCS, Group, Paul M. Waring, Graham R. Taylo

    Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

    Get PDF
    Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.This project has been supported by a grant from Cancer Australia. The Mayo Clinic GWAS was supported by R01CA114343 (Haplotype-based genome screen for ovarian cancer loci). The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith. The AOCS was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, the National Health and Medical Research Council (NHMRC) of Australia (grants 400281, 400413), Cancer Council Victoria, Cancer Council Queensland, Cancer Council New South Wales, Cancer Council South Australia, The Cancer Foundation of Western Australia, and Cancer Council Tasmania. G. Chenevix-Trench is a Senior Principal Research fellow of the NHMRC. Y. Lu is funded by NHMRC grant 496675, S. MacGregor is supported by an NHMRC career development award, S. Edwards and J. French are supported by Fellowships from the National Breast Cancer Foundation (NBCF) Australia. The QIMR Berghofer groups were supported by NHMRC project grants (1051698 to SM and 1058415 to SLE and JDF) and a Weekend to End Women’s Cancer Research Grant (to SLE). A deFazio is funded by the University of Sydney Cancer Research Fund and A deFazio and PR Harnett are funded by the Cancer Institute NSW through the Sydney-West Translational Cancer Research Centre. B. Gao is supported by NHMRC and Cancer Institute NSW scholarship. KBM and MO’R are funded by CR-UK. The Bavarian study (BAV) was supported by ELAN Funds of the University of Erlangen-Nuremberg. HSK would like to thank Ira Schwaab for her tireless work on sample preparation. The Belgian study (BEL) was funded by Nationaal Kankerplan and we would like to thank Gilian Peuteman, Thomas Van Brussel and Dominiek Smeets for technical assistance. The Japanese study (JPN) was funded by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare. The International Collaborative Ovarian Neoplasm study (ICON)7 trial team would like to thank the Medical Research Council (MRC) Clinical Trial Unit (CTU) at the University of London (UCL), the ICON7 Translational Research Sub-group, and the University of Leeds for their work on the coordination of samples and data from the ICON7 trial. The LAX study (Women’s Cancer Program) was supported by the American Cancer Society Early Detection Professorship (120950-SIOP-06-258-06-COUN) and Entertainment Industry Foundation. Funding for MALOVA (MAL) was provided by research grant RO1 CA 61107 from the National Cancer Institute, Bethesda, MD; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project. The Mayo Clinic study (MAYO) was supported by R01 CA122443, P50 CA136393. The Oregon study (ORE) was funded by the Sherie Hildreth Ovarian Cancer Research Fund and the OHSU Foundation. We would like to thank all members of Scottish Gynaecological Clinical Trials group and the SCOTROC1 investigators. SCOTROC1 (SRO) was funded by Cancer Research UK, and the SCOTROC biological studies were supported by Cancer Research UK (grant C536/A6689). RSH receives support from NIH/NIGMS grant K08GM089941, NIH/NCI grant R21 CA139278, NIH/NIGMS grant UO1GM61393, University of Chicago Cancer Center Support Grant (#P30 CA14599) and Breast Cancer SPORE Career Development Award.This is the final version of the article. It first appeared from Impact Journals via http://dx.doi.org/10.18632/oncotarget.704
    • …
    corecore