1,104 research outputs found

    Percutaneous collagen induction (microneedling) for the management of non-atrophic scars: literature review.

    Get PDF
    Introduction: Percutaneous collagen induction (PCI) or needling techniques are increasingly popular in the reconstructive and aesthetic arena. The underlying mechanisms of action rest on producing a pattern of non-ablative and non-confluent puncture wound pattern to the dermis with a resulting regenerative effect to the skin. Methods: A detailed English literature review was conducted using PubMed Medline, Embase and Web of Science; the manuscripts were appraised and classified according to level of evidence as well risk of bias. Results are presented in descending order of evidence for non-atrophic scars. Discussion: On the basis of level 1 evidence currently available, the combination of needling and silicone gel can improve the short-term pliability, height and vascularity of hypertrophic and keloid scars. According to level 2 evidence, needling alongside spray keratinocytes can produce a statistically significant improvement to patient/observer scar ratings and improve pigmentation in hypopigmented burn scars at 12-month follow-up. Results from mixed cohort studies also point towards needling having a beneficial effect on fat graft retention. Level 3 data suggest that needling can render significant resurfacing effects to both mature and actively hypertrophic burn scars at 12-month follow-up based on objective scar scales; furthermore, favourable histological changes are seen, including better collagen alignment in the dermis and increased epidermal thickness. Conclusion: Needling techniques are promising adjuncts to non-atrophic scar management. Further research with long-term follow-up and comparative design protocols incorporating other resurfacing modalities is warranted before the exact value of needling is delineated in scar management protocols

    Normalized power priors always discount historical data

    Get PDF
    Power priors are used for incorporating historical data in Bayesian analyses by taking the likelihood of the historical data raised to the power α as the prior distribution for the model parameters. The power parameter α is typically unknown and assigned a prior distribution, most commonly a beta distribution. Here, we give a novel theoretical result on the resulting marginal posterior distribution of α in case of the normal and binomial model. Counterintuitively, when the current data perfectly mirror the historical data and the sample sizes from both data sets become arbitrarily large, the marginal posterior of α does not converge to a point mass at α=1 but approaches a distribution that hardly differs from the prior. The result implies that a complete pooling of historical and current data is impossible if a power prior with beta prior for α is used

    The magnetic interactions in spin-glasslike Ge/1-x-y/Sn/x/Mn/y/Te diluted magnetic semiconductor

    Full text link
    We investigated the nature of the magnetic phase transition in the Ge/1-x-y/Sn/x/Mn/y/Te mixed crystals with chemical composition changing in the range of 0.083 < x < 0.142 and 0.012 < y < 0.119. The DC magnetization measurements performed in the magnetic field up to 90 kOe and temperature range 2-200 K showed that the magnetic ordering at temperatures below T = 50 K exhibits features characteristic for both spin-glass and ferromagnetic phases. The modified Sherrington - Southern model was applied to explain the observed transition temperatures. The calculations showed that the spin-glass state is preferred in the range of the experimental carrier concentrations and Mn content. The value of the Mn hole exchange integral was estimated to be J/pd/ = 0.45+/-0.05 eV. The experimental magnetization vs temperature curves were reproduced satisfactory using the non-interacting spin-wave theory with the exchange constant J/pd/ values consistent with those calculated using modified Sherrington - Southern model. The magnetization vs magnetic field curves showed nonsaturating behavior at magnetic fields B < 90 kOe indicating the presence of strong magnetic frustration in the system. The experimental results were reproduced theoretically with good accuracy using the molecular field approximation-based model of a disordered ferromagnet with long-range RKKY interaction.Comment: 9 pages, 6 figure

    The Role of Mesotocin on Social Bonding in Pinyon Jays

    Get PDF
    The neuropeptide oxytocin influences mammalian social bonding by facilitating the building and maintenance of parental, sexual, and same‐sex social relationships. However, we do not know whether the function of the avian homologue mesotocin is evolutionarily conserved across birds. While it does influence avian prosocial behavior, mesotocin\u27s role in avian social bonding remains unclear. Here, we investigated whether mesotocin regulates the formation and maintenance of same‐sex social bonding in pinyon jays (Gymnorhinus cyanocephalus), a member of the crow family. We formed squads of four individually housed birds. In the first, “pair‐formation” phase of the experiment, we repeatedly placed pairs of birds from within the squad together in a cage for short periods of time. Prior to entering the cage, we intranasally administered one of three hormone solutions to both members of the pair: mesotocin, oxytocin antagonist, or saline. Pairs received repeated sessions with administration of the same hormone. In the second, “pair‐maintenance” phase of the experiment, all four members of the squad were placed together in a large cage, and no hormones were administered. For both phases, we measured the physical proximity between pairs as our proxy for social bonding. We found that, compared with saline, administering mesotocin or oxytocin antagonist did not result in different proximities in either the pair‐formation or pair‐maintenance phase of the experiment. Therefore, at the dosages and time frames used here, exogenously introduced mesotocin did not influence same‐sex social bond formation or maintenance. Like oxytocin in mammals, mesotocin regulates avian prosocial behavior; however, unlike oxytocin, we do not have evidence that mesotocin regulates social bonds in birds
    • 

    corecore