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Power priors are used for incorporating historical data in Bayesian analyses by taking

the likelihood of the historical data raised to the power α as the prior distribution for

the model parameters. The power parameter α is typically unknown and assigned a

prior distribution, most commonly a beta distribution. Here, we give a novel theoreti-

cal result on the resulting marginal posterior distribution of α in case of the normal

and binomial model. Counterintuitively, when the current data perfectly mirror the

historical data and the sample sizes from both data sets become arbitrarily large, the

marginal posterior of α does not converge to a point mass at α¼1 but approaches a

distribution that hardly differs from the prior. The result implies that a complete

pooling of historical and current data is impossible if a power prior with beta prior for

α is used.

K E YWORD S
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1 | INTRODUCTION

Power priors are a class of prior distributions that can be used for incorporation of historical data in Bayesian analysis of current data (Chen &

Ibrahim, 2000). The basic idea is to use the likelihood of the historical data raised to the power of α as the prior distribution for the model parame-

ters θ. This leads to the posterior distribution of θ borrowing information from both the current and the historical data, typically resulting in an

information gain compared to an analysis of the current data in isolation. The power parameter α is usually restricted to the interval between zero

and one, thereby determining how much the historical data are discounted and enabling a quantitative compromise between the extreme posi-

tions of completely trusting (α¼1) and completely ignoring them (α¼0).

In practice, the power parameter α is unknown and therefore often assigned a prior distribution. In this case, the marginal posterior density of

the model parameters θ based on the current data D and the historical data D0 is given by

πðθjD,D0Þ¼
ð1
0
πðθjD,D0,αÞπðαjD,D0Þdα,

that is, the posterior of θ based on a fixed α averaged over the marginal posterior of α. The marginal posterior of α thus determines how much

pooling between the two data sets occurs, and a complete pooling of both data sets happens when the posterior has all its mass at α¼1.

Standard Bayesian asymptotic theory establishes that, under certain regularity conditions, posterior distributions become more concentrated

with increasing amounts of data (Bernardo & Smith, 2000, Section 5.3). Since the power prior is based on the historical data, intuition would sug-

gest that as the sample sizes of the current and historical data sets increase, the marginal posterior of α should become increasingly concentrated

at α¼0 if there is conflict between the data sets, and increasingly concentrated at α¼1 if there is no conflict. Here, we show that only the former

is true, but not the latter, at least in the typical situation where α has a beta prior distribution and the data have normal or binomial likelihood. In
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case of conflict, there is instead a limiting posterior distribution that is hardly different from the prior. Our results imply that complete discounting

is possible, but complete pooling is impossible.

This paper is structured as follows: We start by showing the claimed result for parameter estimates under normality (Section 2). We then

show that the result also approximately holds in the binomial model (Section 3). The papers then ends with some concluding remarks in Section 4.

As a running example we consider data from two randomized clinical trials comparing the efficacy of the drugs fidaxomicin and vancomycin on

Clostridium difficile-associated diarrhoea in adults (Table 1).

2 | PARAMETER ESTIMATES UNDER NORMALITY

Define the current data set by D¼fθ̂,σg with θ̂ an estimate of an unknown univariate parameter θ and σ the (assumed to be known) standard

error of the estimate. Denote by D0 ¼fθ̂0,σ0g the respective quantities obtained from the historical data. The standard errors are usually of the

form σ¼ κ=√n and σ0 ¼ κ=√n0, where n and n0 are effective sample sizes and κ2 is the variance of one unit. The relative variance c¼ σ20=σ
2 ¼ n=n0

can then be interpreted as a ratio of sample sizes. For both estimates, assume a normal likelihood centred around the parameter θ and with vari-

ance equal to the squared standard error. In the default “normalized” version of the power prior (Duan et al., 2005; Neuenschwander et al., 2009)

the prior for the power parameter α is assigned marginally to the posterior distribution of θ based on an initial prior for θ and the likelihood of the

historical data D0 raised to the power of α. Here and henceforth, we will use an initial uniform prior for the parameter πðθÞ/1 and a beta prior

for the power parameter α�Beðp,qÞ. This choice leads to the normalized power prior

πðθ,αjD0Þ¼ LðD0 jθÞαπðαÞðþ∞

�∞
LðD0 jθ0Þαdθ0

¼Nðθjθ̂0,σ20=αÞBeðαjp,qÞ ð1Þ

with Nð�jm,vÞ the normal density function and Beð�jp,qÞ the beta density function. Combining (1) with the likelihood of the current data produces

a joint posterior for θ and α, that is,

πðθ,αjD,D0Þ¼ LðDjθÞπðθ,αjD0Þð1
0

ð∞
�∞

LðDjθ0Þπðθ0 ,α0 jD0Þdθ0dα0
¼ Nðθ̂jθ,σ2ÞNðθjθ̂0,σ20=αÞBeðαjp,qÞð1

0
Nðθ̂jθ̂0,σ2þσ20=α

0ÞBeðα0 jp,qÞdα0
,

from which a marginal posterior for α can be obtained by integrating out θ, that is,

πðαjD,D0Þ¼
ðþ∞

�∞
πðθ,αjD,D0Þdθ¼ Nðθ̂jθ̂0,σ2þσ20=αÞBeðαjp,qÞð1

0
Nðθ̂jθ̂0,σ2þσ20=α

0ÞBeðα0 jp,qÞdα0
: ð2Þ

The black solid lines in Figure 1 show the marginal posterior distributions of the power parameter α (left) and the log risk ratio θ (right) based

on a uniform α�Beðp¼1,q¼1Þ prior for the power parameter and the data from Table 1; the log risk ratio with standard error from the current

data D¼fθ̂¼0:15,σ¼0:06g and the log risk ratio with standard error from the historical data D0 ¼fθ̂0 ¼0:16,σ0 ¼0:06g. Both distributions are

computed via numerical integration.

The left plot of Figure 1 shows that the observed marginal posterior of α has hardly changed from the uniform prior, despite the almost per-

fect correspondence of historical and current log risk ratio. The dashed line shows the (soon to be discussed) marginal posterior for the best-case

TABLE 1 Historical and current data on the comparison between fidaxomicin and vancomycin with respect to their effect on Clostridium
difficile-associated diarrhoea in adults.

Study Risk (Fidaxomicin) Risk (Vancomycin) Risk ratio (95% CI)

Cornely et al. (2012) 193
270¼71:5% 163

265¼ 61:5% 1:16 ð1:04,1:31Þ
Louie et al. (2011) 214

302¼70:9% 198
327¼ 60:6% 1:17 ð1:04,1:31Þ

Note: The number of participants and events were taken from the respective intention-to-treat analysis of the studies as in the meta-analysis of Nelson

et al. (2017).
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scenario when both log risk ratios perfectly correspond and their standard errors become arbitrarily small. As is visible, this best-case posterior of

α is not too far off the observed one, giving only slightly more support to larger values of α.

The right plot of Figure 1 shows the corresponding marginal posterior for θ. As can be seen, the observed posterior (solid line) and the best-

case posterior (dashed line) are virtually indistinguishable, suggesting that the data achieve as much pooling as the normalized power prior model

permits. In contrast, the dotted line indicates that the posterior based on complete pooling of the data sets would be somewhat more peaked.

In general the integral in the denominator of (2) has to be computed by numerical integration, but there are certain important situations when

an analytical solution exists, and further insight can be gained. We will discuss these cases in the following.

2.1 | Perfect compatibility of historical and current data

The first situation occurs when the current data perfectly mirror the historical data in the sense that both parameter estimates are equivalent

(θ̂¼ θ̂0). In this case, several terms cancel in (2) so that the integral can be represented in terms of the hypergeometric function 2F1ða,b,c;zÞ¼Ð 1
0t

b�1ð1� tÞc�b�1ð1� tzÞ�adt
n o

=Bðb,c�bÞ with Bðx,yÞ the beta function (Abramowitz & Stegun, 1965, Section 15.3.1), that is,

πðαjD,D0, θ̂¼ θ̂0Þ¼ ðα=cþ1Þ�1=2Beðαjpþ1=2,qÞ
2F1ð1=2,pþ1=2,pþqþ1=2;�1=cÞ : ð3Þ

where c¼ σ20=σ
2 is the relative variance. The distribution (3) is close to a Beðpþ1=2,qÞ distribution, which is hardly different from the Beðp,qÞ

prior distribution, despite perfect compatibility of both data sets. Importantly, the marginal posterior (3) does not depend on the actual value of

the standard errors σ and σ0 but only on the relative variance c. This means that (3) holds for finite standard errors but also in the idealized mathe-

matical situation where both standard errors go equally fast to zero (i.e., infinite sample size), but with possibly different starting values (c≠1).

Typically, the historical data are predetermined and only the standard error of the current study can be changed. It is therefore interesting to

study the behaviour of (3) for c!∞; that is, the current standard error σ goes to zero while the historical standard error σ0 remains fixed,

reflecting an arbitrary increase of the current sample size. In that case, it is straightforward to see from the power series representation of the

hypergeometric function (Abramowitz & Stegun, 1965, Section 15.1.1) that

lim
c!∞2F1ð1=2,pþ1=2,pþqþ1=2; �1=cÞ¼ lim

c!∞
1þOð1=cÞ¼1:

Hence, the limiting posterior density is

lim
c!∞

πðαjD,D0, θ̂¼ θ̂0Þ¼Beðαjpþ1=2,qÞ, ð4Þ

F IGURE 1 Power prior modelling of current data D¼fθ̂¼0:15,σ¼0:06g from Cornely et al. (2012) and historical data D0 ¼fθ̂0 ¼0:16,σ0 ¼
0:06g from Louie et al. (2011). A α�Beð1,1Þ prior is used for the power parameter. Marginal posterior densities are computed by numerical
integration.
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that is, again a beta density but with updated success parameter pþ1=2, so just slightly different from the prior. The limiting Beð3=2,1Þ distribu-
tion for the uniform prior is depicted by the dashed line in the left plot of Figure 1.

2.2 | Arbitrarily precise current data

The second situation in which the marginal posterior (2) is available in closed form is the limiting case when the current standard error σ goes to

zero while the historical standard error σ0 remains fixed (but in contrast to the previous situation the parameter estimates θ̂ and θ̂0 can take differ-

ent values). In this case, the integral in (2) can be represented by the confluent hypergeometric function Mða,b,zÞ¼Ð 1
0 expðztÞta�1ð1� tÞb�a�1dt

n o
=Bðb�a,aÞ (Abramowitz & Stegun, 1965, Section 13.2.1) so that the marginal posterior is given by

lim
σ#0

πðαjD,D0Þ¼
exp �αðθ̂� θ̂0Þ2=ð2σ20Þ

n o

Mfpþ1=2,pþqþ1=2,�ðθ̂� θ̂0Þ2=ð2σ20Þg
Beðαjpþ1=2,qÞ: ð5Þ

As expected, the distribution (5) reduces to (4) when the parameter estimates are equal (θ̂¼ θ̂0) since then the left fraction becomes one,

which can be shown using the power series representation of the confluent hypergeometric function (Abramowitz & Stegun, 1965,

Section 13.1.2).

Figure 2 shows the distribution (5) for different values of the parameter estimate difference standardized by the historical standard error

(jθ̂� θ̂0j=σ0). One can see that when the parameter estimates become more different (larger jθ̂0� θ̂j), the limiting distribution (5) will be increas-

ingly shifted towards smaller values of α indicating more incompatibility among the data sets and reducing the information borrowing from the

historical data. This shift amplifies with decreasing historical standard errors σ0, meaning that the posterior can become arbitrarily peaked by

increasing the sample size of the historical study. In contrast, when the parameter estimates are the same (θ̂¼ θ̂0), the historical standard error σ0

does not influence the posterior.

The marginal posterior for α can thus at best become a Beðpþ1=2,qÞ if the prior is a Beðp,qÞ, implying that a complete pooling of historical

and current data can never be achieved. On the other hand, a complete discounting is possible since conflict between the current and historical

data can make the marginal posterior arbitrarily peaked at α¼0. However, considering that the distribution (5) is based on an extremely informa-

tive current data set that leads to an estimate of the unknown parameter θ without any measurement error, the rate at which the posterior

becomes more concentrated seems also dissatisfactory. For instance, for a standardized parameter difference jθ̂� θ̂0j=σ0 ¼3, the posterior is only

slightly peaked at around α¼0:1.

3 | BINOMIAL MODEL

So far, we assumed a normal likelihood and a univariate parameter; Appendix A shows that the previous result can be generalized to normal linear

models with multivariate parameter θ. In this section, we will show that the previous result also holds approximately in the binomial model, which

is an important model class in medical applications of power priors.

F IGURE 2 Limiting marginal posterior distribution of power parameter α based on α�Beð1,1Þ prior and when the current standard error
goes to zero (σ#0), for different values of the parameter difference standardized by the historical standard error jθ̂� θ̂0j=σ0.
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Let D¼fx,ng and D0 ¼fx0,n0g denote the number of successes and total trials from current data and historical data set, respectively. Assume

a binomial likelihood with success probability θ for each of them, and let θ̂¼ x=n and θ̂0 ¼ x0=n0 denote the respective maximum likelihood esti-

mates. Assigning an initial beta prior θ�Beð0,0Þ for the success probability and a beta prior α�Beðp,qÞ for the power parameter leads to the nor-

malized power prior

πðθ,αjD0Þ¼Befθjαx0,αðn0�x0ÞgBeðαjp,qÞ: ð6Þ

Combining the prior (6) with the likelihood of the current data leads to a joint posterior distribution for θ and α, from which a marginal poste-

rior for α can be obtained by integrating out θ, that is,

πðαjD,D0Þ¼ BeBinfxjn,αx0,αðn0�x0ÞgBeðαjp,qÞð1
0
BeBinfxjn,α0x0,α0ðn0�x0ÞgBeðα0 jp,qÞdα0

ð7Þ

with BeBinð�jn,p,qÞ the beta-binomial probability mass function.

As for the normal model, the integral in the denominator of (7) is generally not available in closed form. Yet again, it is possible to obtain a

closed form expression when the probability estimates from both studies are equivalent (θ̂¼ θ̂0). Application of Stirling's approximation

Bðx,yÞ≈ ffiffiffiffiffiffi
2π

p
xx�1=2yy�1=2ðxþyÞ�ðxþy�1=2Þ to both beta functions in the probability mass function of the beta-binomial leads then to

BeBinfxjn,αx0,αðn0�x0Þg≈ n
x

� �
θ̂
xð1� θ̂Þn�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αn0

nþαn0

r
: ð8Þ

Using the approximation (8) in numerator and denominator of (7) produces the same marginal posterior (3) as for the normal model but with

c¼ n=n0, representing the relative sample size of the data sets. The limiting marginal posterior distribution of α is thus (approximately) the same

for normal and binomial model.

Figure 3 shows the marginal posterior (7) based on the data from Table 1 using the risk in the fidaxomicin group as the parameter of interest.

The black solid line depicts the posterior based on the observed data from Cornely et al. (2012), whereas the dashed lines depict posteriors based

on hypothetical data which perfectly mirror the historical data (i.e., with identical probability estimates θ̂¼ θ̂0) from Louie et al. (2011) but with dif-

ferent relative sample sizes c¼ n=n0. Numerical integration is used for computing the posterior in all finite sample size cases; for c!∞, the limit-

ing distribution (4) is shown. It can be seen that the limiting posterior density based on Stirling's approximation (yellow line) is close to the exact

posterior for finite relative sample sizes c, suggesting that the approximation is reasonably accurate. Moreover, the observed marginal posterior

(which has c¼0:89) is very close to the best-case posterior for c¼1, indicating that the data achieve almost as much pooling as the power prior

permits in that case.

F IGURE 3 Marginal posterior of power parameter α based on α�Beð1,1Þ prior and historical data D0 ¼fx0 ¼214,n0 ¼302g from Louie et al.
(2011). The black solid line shows the marginal posterior for the actually observed current data D¼fx¼193,n¼270g from Cornely et al. (2012),
whereas the dashed lines show the best-case marginal posteriors for hypothetical current data D¼fx¼ c�x0,n¼ c�n0g, which perfectly mirror
the original data but with relative sample sizes c¼ n=n0.
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4 | DISCUSSION

We showed that normalized power priors in normal and binomial models combined with beta priors assigned to the power parameter α have

undesirable and counterintuitive properties. Specifically, in the best-case scenario when the current data perfectly mirror the historical data and

the sample sizes from both data sets become arbitrarily large, the marginal posterior of α does not converge to a point mass at α¼1 but

approaches a α�Beðpþ1=2,qÞ distribution, hardly differing from the prior α�Beðp,qÞ. The result implies that a complete pooling of historical

and current data can never be achieved. Our case study illustrates that the property is not only a mathematical curiosity but can occur in statistical

analysis of medical data.

We still believe that normalized power priors are useful since they permit arbitrarily large data-driven discounting of historical data. However,

data analyst should be aware that this does not work in the other direction as the amount of possible pooling is predetermined by the prior. Data

analysts have different options to alleviate this limitation. For instance, they can use the power prior based on a fixed α and use either a “guide
value” (Ibrahim et al., 2015) or elicit a reasonable value from external knowledge about the similarity of the data sets. Another option is to specify

informative priors which give most of their mass to larger values of α, thereby shifting the best-case marginal posterior to larger values as well.

Finally, a pragmatic alternative is to specify α via an empirical Bayes approach as proposed by Gravestock and Held (2017), which permits com-

plete pooling of both data sets.

We only studied the limiting marginal posterior of α in the normal and binomial models combined with beta priors on α, yet we conjecture

that the issue is more fundamental and also present in other types of models. However, this will likely be more difficult to establish as marginal

posteriors are typically not available in closed form for more complex models.

For the normal model, there is an exact correspondence between power parameter models with fixed α and hierarchical (random-effects

meta-analysis) models with fixed heterogeneity variance (Chen & Ibrahim, 2006). This connection may provide an intuition for why the cou-

nterintutive result occurs: Precisely estimating a heterogeneity variance from two observations alone (the historical and current data sets) seems

like an impossible task as the “unit of information” is the number of data sets and not the number of samples within a data set. We report else-

where on the precise connection between power parameter and hierarchical models when power parameter and the heterogeneity variance are

random (Pawel et al., 2022).
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APPENDIX A: NORMAL LINEAR MODEL

Define the current data by D¼fy,Xg with y an n�1 vector of observations and X an n�k matrix of known covariates. Assume a linear model y¼
Xθþε with θ a k�1 vector of parameters and ε an n�1 vector of random errors whose components are independently normally distributed

around zero with (known) variance σ2 variance. Denote by D0 ¼fy0,X0g the respective quantities from a historical data set. Finally, let θ̂¼
ðX0XÞ�1

X0y and θ̂0 ¼ðX0
0X0Þ�1

X0
0y0 denote the respective maximum likelihood estimates of θ. Based on a uniform initial prior πðθÞ/1 for the

parameter vector and a beta prior α�Beðp,qÞ for the power parameter, we obtain the normalized power prior

πðθ,αjD0Þ¼Nk θjθ̂0,σ2α�1ðX0
0X0Þ�1

� �
Beðαjp,qÞ ðA1Þ

with Nkð�jμ,ΣÞ the density function of a k-variate normal. Updating the prior (A1) with the likelihood of the current data leads to a joint posterior

for θ and α, from which a marginal posterior for α can be obtained by integrating out θ, that is,

πðαjD,D0Þ¼
Nk θ̂jθ̂0,σ2ðX0XÞ�1þσ2α�1ðX0

0X0Þ�1
� �

Beðαjp,qÞð1
0
Nk θ̂jθ̂0,σ2ðX0XÞ�1þσ2α0�1ðX0

0X0Þ�1
� �

Beðα0 jp,qÞdα0
: ðA2Þ

When the current and historical data are perfectly compatible (characterized by equivalent maximum likelihood estimates θ̂¼ θ̂0), the integral

in (A2) can again be represented in terms of the hypergeometric function, and the marginal posterior of α is given by (3) but with c¼ jX0Xj=jX0
0X0j

the ratio of the determinants of the precision matrices ðX0XÞ=σ2 and ðX0
0X0Þ=σ2 of the maximum likelihood estimates θ̂ and θ̂0.
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