20 research outputs found

    Reaction dynamics of O(3P) atoms with saturated hydrocarbons

    Get PDF

    Ammoniak ohne CO₂-Emissionen

    Get PDF

    Energy Storage as Part of a Secure Energy Supply

    Get PDF
    The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However, it affects all areas of the energy system, albeit with different results. Within the energy system, various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers, and the demand-oriented supply ensures that energy demands are met at all times. However, renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly. Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy, store it in a storage medium for a suitable period of time, and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations, each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations. These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage, various technologies are currently in various stages of research, development, and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat, exploitation of phase transitions, adsorption/desorption processes, and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus, they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen. Hydrogen can be transformed by various processes into other energy carriers, which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system, chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector, it also creates new opportunities for increased flexibility, novel synergies, and additional optimization. Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende, i.e. the transition towards a more sustainable energy system. Therefore, the existing legal framework defines some of the discussions and findings within the article, specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act, which is under constant reformation. While the article is written from a German perspective, the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology

    Flexibilitätsoptionen in der Grundstoffindustrie : Methodik, Potenziale, Hemmnisse

    Get PDF
    Die Prozesse der Grundstoffindustrie sind verantwortlich für einen Großteil des industriellen Energie- und Stromverbrauchs in Deutschland. Welche technischen Möglichkeiten bieten sich in diesen Prozessen auf Flexibilitätsanforderungen des Stromsystems zu reagieren? Das vom BMBF geförderte Kopernikus-Projekt SynErgie untersucht die Flexibilität von Industrieprozessen. Ein Arbeitspaket, das aus dem Projektantrag des INFLUX Konsortiums hervorgegangen ist, hat nun umfassende Studie zu den Flexibilitätsoptionen in den Prozessen der Grundstoffindustrie veröffentlicht

    Flexibilitätsoptionen in der Grundstoffindustrie II : Analysen, Technologien, Beispiele

    Get PDF
    Innerhalb des Kopernikus-Projekts "Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung" - kurz SynErgie - erheben Wissenschaftlerinnen und Wissenschaftler das Flexibilisierungspotenzial von Industrieprozessen und versuchen die Machbarkeit an Schlüsselprozessen zu demonstrieren. Die technischen Herausforderungen und Lösungsoptionen, die sich in den Prozessen der Grundstoffindustrie - wie etwa Stahl, Chemie, Zement, Glas und Feuerfest - ergeben, haben sie bereits in einem ersten Band "Flexibilitätsoptionen in der Grundstoffindustrie: Methodik, Potenziale, Hemmnisse" ausführlich beschrieben und auf Basis einer eigens entwickelten Methodik analysiert. Der Fokus des vorliegenden zweiten Bandes liegt auf den Flexibilitätsperspektiven, die sich durch hybride Wärmebereitstellung, den Einsatz thermischer Energiespeicher und der Nutzung synthetischer Gase in den entsprechenden Branchen ergeben können. Hierzu erweiterten die Forschenden die bereits im ersten Band entwickelte Methodik um die relevanten Aspekte der Gasversorgung und thermischen Speicherung. Anhand von konkreten technischen Beispielen aus den Branchen stellen sie darin die Anwendungsmöglichkeiten und ein gegebenenfalls daraus folgendes Flexibilitätspotenzial dar und diskutieren dies

    Flexibilitätsoptionen in der Grundstoffindustrie : Methodik, Potenziale, Hemmnisse

    Get PDF
    Die Prozesse der Grundstoffindustrie sind verantwortlich für einen Großteil des industriellen Energie- und Stromverbrauchs in Deutschland. Welche technischen Möglichkeiten bieten sich in diesen Prozessen auf Flexibilitätsanforderungen des Stromsystems zu reagieren? Das vom BMBF geförderte Kopernikus-Projekt SynErgie untersucht die Flexibilität von Industrieprozessen. Ein Arbeitspaket, das aus dem Projektantrag des INFLUX Konsortiums hervorgegangen ist, hat nun umfassende Studie zu den Flexibilitätsoptionen in den Prozessen der Grundstoffindustrie veröffentlicht
    corecore