83 research outputs found

    The future is bright for polyoxometalates

    Get PDF
    Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic pH range. These inorganic clusters, amenable of a variety of structures, have been studied in environmental, chemical, and industrial fields, having applications in catalysis and macromolecular crystallography, as well as applications in biomedicine, such as cancer, bacterial and viral infections, among others. Herein, we connect recent POMs environmental applications in the decomposition of emergent pollutants with POMs’ biomedical activities and effects against cancer, bacteria, and viruses. With recent insights in POMs being pure, organic/inorganic hybrid materials, POM-based ionic liquid crystals and POM-ILs, and their applications in emergent pollutants degradation, including microplastics, are referred. It is perceived that the majority of the POMs studies against cancer, bacteria, and viruses were performed in the last ten years. POMs’ biological effects include apoptosis, cell cycle arrest, interference with the ions transport system, inhibition of mRNA synthesis, cell morphology changes, formation of reaction oxygen species, inhibition of virus binding to the host cell, and interaction with virus protein cages, among others. We additionally refer to POMs’ interactions with various proteins, including P-type ATPases, aquoporins, cinases, phosphatases, among others. Finally, POMs’ stability and speciation at physiological conditions are addressed.info:eu-repo/semantics/publishedVersio

    Polyoxometalates impact as anticancer agents

    Get PDF
    Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords “polyoxometalates” and “cell cycle”. The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.LA/P/0101/2020info:eu-repo/semantics/publishedVersio

    Rationalizing the Decavanadate(V) and Oxidovanadium(IV) Binding to G-Actin and the Competition with Decaniobate(V) and ATP

    Get PDF
    The experimental data collected over the past 15 years on the interaction of decavanadate(V) (V10O286-; V10), a polyoxometalate (POM) with promising anticancer and antibacterial action, with G-actin, were rationalized by using several computational approaches (docking, density functional theory (DFT), and molecular dynamics (MD)). Moreover, a comparison with the isostructural and more stable decaniobate(V) (Nb10O286-; Nb10) was carried out. Four binding sites were identified, named α, β, γ, and δ, the site α being the catalytic nucleotide site located in the cleft of the enzyme at the interface of the subdomains II and IV. It was observed that the site α is preferred by V10, whereas Nb10 is more stable at the site β; this indicates that, differently from other proteins, G-actin could contemporaneously bind the two POMs, whose action would be synergistic. Both decavanadate and decaniobate induce conformational rearrangements in G-actin, larger for V10 than Nb10. Moreover, the binding mode of oxidovanadium(IV) ion, VIVO2+, formed upon the reduction of decavanadate(V) by the -SH groups of accessible cysteine residues, is also found in the catalytic site α with (His161, Asp154) coordination; this adduct overlaps significantly with the region where ATP is bound, accounting for the competition between V10 and its reduction product VIVO2+ with ATP, as previously observed by EPR spectroscopy. Finally, the competition with ATP was rationalized: since decavanadate prefers the nucleotide site α, Ca2+-ATP displaces V10 from this site, while the competition is less important for Nb10 because this POM shows a higher affinity for β than for site α. A relevant consequence of this paper is that other metallodrug-protein systems, in the absence or presence of eventual inhibitors and/or competition with molecules of the organism, could be studied with the same approach, suggesting important elements for an explanation of the biological data and a rational drug design

    The biological applications of metals and metal complexes

    Get PDF
    Over the course of biological evolution, approximately 25 to 30 elements have been recognized as essential for the proper functioning of biological systems since the emergence of life [...]LA/P/0101/2020info:eu-repo/semantics/publishedVersio

    The Ca2+-ATPase inhibition potential of gold (I, III) compounds

    Get PDF
    The therapeutic applications of gold are well-known for many centuries. The most used gold compounds contain Au(I). Herein, we report, for the first time, the ability of four Au(I) and Au(III) complexes, namely dichloro (2-pyridinecarboxylate) Au(III) (abbreviated as1), chlorotrimethylphosphine Au(I) (2), 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene Au(I) chloride (3), and chlorotriphenylphosphine Au(I) (4), to affect the sarcoplasmic reticulum (SR) Ca2+-ATPase activity. The tested gold compounds strongly inhibit the Ca2+-ATPase activity with different effects, being Au(I) compounds2and4the strongest, with half maximal inhibitory concentration (IC50) values of 0.8 and 0.9 mu M, respectively. For Au(III) compound1and Au(I) compound3, higher IC(50)values are found (4.5 mu M and 16.3 mu M, respectively). The type of enzymatic inhibition is also different, with gold compounds1and2showing a non-competitive inhibition regarding the native substrate MgATP, whereas for Au compounds3and4, a mixed type of inhibition is observed. Our data reveal, for the first time, Au(I) compounds with powerful inhibitory capacity towards SR Ca(2+)ATPase function. These results also show, unprecedently, that Au (III) and Au(I) compounds can act as P-type ATPase inhibitors, unveiling a potential application of these complexes.FCT: UIDB/04326/2020/ UIDB/50006/2020info:eu-repo/semantics/publishedVersio

    Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate

    Get PDF
    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68 ± 22 lM and 17 ± 2 lM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2 mM concentration of ‘‘metavanadate’’ solution that contains ortho and metavanadate species, as observed by combining kinetic with 51V NMR spectroscopy studies. Although at 25 C, decameric vanadate (10 lM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 lM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2 mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10 h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18 h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the ‘‘decavanadate’’ interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems

    Actin cytoskeleton disruption is an early event upon exposure of cerebellar granule neurons to SIN-1-induced oxidative stress

    Get PDF
    In this work we have studied the alterations of the actin cytoskeleton in cultured cerebellar granule neurons during exposure to the peroxynitritereleasing agent SIN-1 for less than 2 hours. Actin polymerization state was assessed by fluorescence microscopy ratio images using double labelling for actin filaments (phallacidin) and monomers (DNase-I). In addition, agonists and antagonists of L-type Ca2+ channels and NMDA receptors were used in order to find out whether these compounds were able to attenuate or potentiate the effects of oxidative stress on the perturbation of the actin cytoskeleton. The results reveal that a flux of peroxynitrite as low as 0.5 ;M/min during 1h is sufficient to promote alterations of actin dynamics leading to partial actin cytoskeleton disruption and suggest that this is an early event linked to cytosolic calcium concentration changes

    Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation

    Get PDF
    Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.info:eu-repo/semantics/publishedVersio

    Polyoxidovanadates' interactions with proteins: an overview

    Get PDF
    Polyoxidovanadates (POVs, previously named polyoxovanadates) are a subgroup of polyoxidometalates (POMs, previously named polyoxometalates) with interesting pharmacological actions that have been tested as potential antidiabetic, antibacterial, antiprotozoal, antiviral, and anticancer drugs. They contain mainly vanadium and are able to interact with proteins, affecting various biological processes. The most studied POV is the isopolyoxidovanadate decavanadate (V-10), which interacts with proteins and/or enzymes such as tyrosine protein phosphatases, P-type ATPases, RNA triphosphatases, myosin and actin. However, in many POVs-protein systems, the binding sites and/or the residues involved in the interaction are not identified. In the present review, the interactions of POVs, as well as linear trivanadate (V-3), both linear and cyclic tetravanadate (V-4) and two proposed heptavanadate (V-7; which are better described by V-10 molecules), with proteins are described through X-ray crystallographic studies. Interactions with POVs through theoretical and spectroscopic studies of proteins related to muscle contraction, serum, oxidative stress, and diabetes were also discussed. In sum, herein, we describe POVs' interactions with various proteins including acid phosphatase A, receptor tyrosine kinase, ectonucleoside triphosphate diphosphohydrolase (NTPDases), transient receptor potential cation channel (TRPM4), phosphoglucomutases, P-type ATPases, myosin, actin, transferrin, albumin, and glucosidases, among others. The putative POVs' effects on proteins are impacted by the POV' stability and speciation. The modes of POVs' interactions include H-bond, electrostatic, H-bond + electrostatic, van der Waals, and covalent binding. The spectroscopic, X-ray and computational results, the sites and modes of binding are described in detail. (C) 2021 The Authors. Published by Elsevier B.Vinfo:eu-repo/semantics/publishedVersio

    Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue

    Get PDF
    Inorg Chem. 2008 Jul 7;47(13):5677-84. doi: 10.1021/ic702405dThe general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase
    corecore