418 research outputs found

    Decavanadate: a journey in a search of a role

    Get PDF
    Currently, efforts have been directed towards using decavanadate as a tool for the understanding of several biochemical processes such as muscle contraction, calcium homeostasis, in vivo changes of oxidative stress markers, mitochondrial oxygen consumption, mitochondrial membrane depolarization, actin polymerization and glucose uptake, among others. In addition, studies have been conducted in order to make vanadium available and safe for clinical use, for instance with decavanadate compounds that present interesting pharmacological properties, eventually useful for the treatment of diabetes. Here, recent contributions of decavanadate to the effects of vanadium in biological systems, not only in vitro, but also in vivo, are analysed

    Decavanadate toxicology and pharmacological activities: V10 or V1, both or none?

    Get PDF
    This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 M) whereas exhibiting lower inhibition activities for Ca2+-ATPase activity (15 M) and actin polymerization (17 M). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it alltogether, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still tobe clarified might involve besides V10 and V1 also vanadium(IV) species

    Decavanadate contribution to vanadium biomarkers

    Get PDF
    The levels of vanadium in urine and blood can be used as biomarkers of exposure, but the mechanism of vanadium toxicity is of major relevance in order to understand how biomarkes can be valuable. Our research group has performed in vivo and in vitro studies using fish and rat models to analysed and compare the toxicity effects induce by vanadium(V) species in the forms of vanadate (V1) and decavanadate (V10). Vanadium toxicological studies often disregarded the formation of decameric vanadate species (V10) known to interact, in vitro, with high-affinity with many proteins such as myosin, actin and sarcoplasmic reticulum calcium pump. Among different experimental in vivo conditions, it was analysed different: (i) mode of administration; (ii) fish species; (iii) metal concentration (1 and 5 mM); (iv) tissues; (v) subcellular fractions ; (vi) exposure time and particularly different metal ionic species, such as V1 and V10. It was observed that‘‘decavanadate’’ promote different effects than other vanadate oligomers in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation. Moreover, in in vitro studies using fish and rat liver mitochondria, it was observed that decavanadate impared respiration by depolarization of the mitochondrial membrane, wich altered the redox state of complex III. Putting it all together, it is suggested that decavanadate species are much more effective than monomeric vanadate species in inducing changes in several biomarkers. By changing mitochondrial functioning decavanadate migh provoke ROS formation, but further studies are needed to understand V10 contribution to vanadium biomarkers.info:eu-repo/semantics/publishedVersio

    A bioquímica na sociedade

    Get PDF
    A Química Biológica, também conhecida por Bioquímica, é uma área do conhecimento que é cada vez mais importante nas sociedades contemporâneas. A Bioquímica, é uma ciência interdisciplinar que utiliza estratégias e métodos de muitas outras, desde a Física à Farmacologia

    A comparison between Vanadyl, Vanadate, and decavanadate effects in actin structure and function: combination of several spectroscopic studies

    Get PDF
    The studies about the interaction of actin with vanadium are seldom. In the present paper the effects of vanadyl, vanadate, and decavanadate in the actin structure and function were compared. Decavanadate clearly interacts with actin, as shown by 51V-NMR spectroscopy. Decavanadate interaction with actin induces protein cysteine oxidation and vanadyl formation, being both prevented by the natural ligand of the protein, ATP. Monomeric actin (G-actin) titration with vanadyl, as analysed by EPR spectroscopy, indicates a 1 : 1 binding stoichiometry and a kd of 7.5 μM. Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC50 of 68 and 300 μM, respectively, as analysed by light-scattering assays. However, only vanadyl induces G-actin intrinsic fluorescence quenching, which suggests the presence of vanadyl high-affinity actin-binding sites. Decavanadate increases (2.6-fold) actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Finally, both vanadium species increased ε-ATP exchange rate (k = 6.5 × 10−3 and 4.47 × 10−3 s−1 for decavanadate and vanadyl, resp.). Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl

    A química da vida

    Get PDF
    A Bioquímica ou Química da Vida é uma ciência interdisciplinar que utiliza estratégias e métodos de todas as Ciências Exactas e Naturais. Nos últimos 10 anos, foram catorze os prémios Nobel da Química, Fisiologia e Medicina que foram atribuídos na área da Bioquímica o que reflecte a importância desta área de conhecimento nas Sociedades contemporâneas. A Química da Vida não se reduz apenas ao estudo dos compostos orgânicos, tais como os açúcares, lipidos ou proteínas mas também ao estudo da função de iões metálicos como por exemplo o Ca2+, Na+ ou Fe2+ que estão envolvidos em processos biológicos essenciais, tais como a contracção muscular, a transmissão do impulso nervoso, a mineralização do tecido ósseo ou o transporte de oxigénio. É a lei do Oportunismo (utilização de um mesmo material ou processo para vários fins), pois os seres vivos aprenderam a utilizar, a partir dos minerais, vários elementos metálicos que se tornaram essenciais, como os agregados ferro-enxofre (da pirite) para fazerem parte de proteínas (as metaloproteínas) que catalizam reacções químicas que ocorrem nas células. Outras metaloproteínas incluem outros metais tais como cobre, molibdénio, vanádio que são igualmente essenciais para a Química da Vida. Pequenas moléculas, são também indispensáveis para a homeostasia celular, por exemplo os iões carbonato e os iões fosfato, responsáveis pela estabilização do valor de pH fisiológico (próximo de 7.0). Mas, mais importante ainda é a molécula de ATP (Á-tê-pês é a conta que Deus fez), a moeda de troca energética para todos os processos celulares. Por dia, um Homo sapiens com cerca de 70 kg produz cerca de 700 kg de ATP. Dá para acreditar? Tudo o que comemos, acúçares, proteínas, lipidos “arde” nas mitocôndrias produzindo ATP necessário para todos os processos celulares (contracção muscular, sinalização celular, etc) e água (tinha que meter água!). É a lei do Menor Esforço ou Cera (fazer o máximo com um mínimo de estratégias) juntamente com a Lei da Reciclagem: tudo, ou quase tudo, é reciclado no euro Bioquímico: o ATP
    corecore