201 research outputs found
Relativistic electron acceleration by surface plasma waves excited with high intensity laser pulses
The process of high energy electron acceleration along the surface of grating targets (GTs) that were irradiated by a relativistic, high-contrast laser pulse at an intensity was studied. Our experimental results demonstrate that for a GT with a periodicity twice the laser wavelength, the surface electron flux is more intense for a laser incidence angle that is larger compared to the resonance angle predicted by the linear model. An electron beam with a peak charge of , for electrons with energies , was measured. Numerical simulations carried out with parameters similar to the experimental conditions also show an enhanced electron flux at higher incidence angles depending on the preplasma scale length. A theoretical model that includes ponderomotive effects with more realistic initial preplasma conditions suggests that the laser-driven intensity and preformed plasma scale length are important for the acceleration process. The predictions closely match the experimental and computational results
High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target
We report on the successful operation of a newly developed cryogenic jet target at high intensity
laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Fa-
cility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton
beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at
1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative
acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able
to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density,
and high-repetition rate capability, this target is promising for future applications
Efficacy and safety of alirocumab in insulin-treated patients with type 1 or type 2 diabetes and high cardiovascular risk:Rationale and design of the ODYSSEY DM-INSULIN trial
Aims: The coadministration of alirocumab, a PCSK9 inhibitor for treatment of hypercholesterolaemia, and insulin in diabetes mellitus (DM) requires further study. Described here is the rationale behind a phase-IIIb study designed to characterize the efficacy and safety of alirocumab in insulin-treated patients with type 1 (T1) or type 2 (T2) DM with hypercholesterolaemia and high cardiovascular (CV) risk. Methods: ODYSSEY DM-INSULIN (NCT02585778) is a randomized, double-blind, placebo-controlled, multicentre study that planned to enrol around 400 T2 and up to 100 T1 insulin-treated DM patients. Participants had low-density lipoprotein cholesterol (LDL-C) levels at screening. ≥. 70. mg/dL (1.81. mmol/L) with stable maximum tolerated statin therapy or were statin-intolerant, and taking (or not) other lipid-lowering therapy; they also had established CV disease or at least one additional CV risk factor. Eligible patients were randomized 2:1 to 24. weeks of alirocumab 75. mg every 2. weeks (Q2W) or a placebo. Alirocumab-treated patients with LDL-C. ≥. 70. mg/dL at week 8 underwent a blinded dose increase to 150. mg Q2W at week 12. Primary endpoints were the difference between treatment arms in percentage change of calculated LDL-C from baseline to week 24, and alirocumab safety. Results: This is an ongoing clinical trial, with 76 T1 and 441 T2 DM patients enrolled; results are expected in mid-2017. Conclusion: The ODYSSEY DM-INSULIN study will provide information on the efficacy and safety of alirocumab in insulin-treated individuals with T1 or T2 DM who are at high CV risk and have hypercholesterolaemia not adequately controlled by the maximum tolerated statin therapy
Antioksidativni potencijal i sposobnost hvatanja slobodnih radikala metanolnog ekstrakta plodova Citrullus colocynthis (L.) Schrad.
Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) is a medicinal plant traditionally used as an abortifacient and to treat constipation, oedema, bacterial infections, cancer and diabetes. Preliminary phytochemical screening of the plant showed the presence of large amounts of phenolics and flavonoids. Subsequent quantification showed the presence of 0.74% phenolics (calculated as gallic acid) and 0.13% flavonoids calculated as catechin equivalents per 100 g of fresh mass. The presence of phenolic compounds prompted us to evaluate its antioxidant activity. In the present study, methanolic fruit extract of C. colocynthis was screened to evaluate its free-radical scavenging ability. The highest antioxidant and free radical scavenging effect of the fruit extract was observed at a concentration of 2500 µg mL1.Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) je ljekovita biljka koja se tradicionalno upotrebljava kao abortiv i za liječenje konstipacije, edema, bakterijskih infekcija, karcinoma i dijabetesa. Preliminarno fitokemijsko pretraživanje ukazalo je na prisutnost velikih količina fenola i flavonoida. Udio fenola bio je 0,74% (preračunato na galnu kiselinu), a flavonoida 0,13% preračunato na ekvivalente katehina na 100 g svježe mase. Zbog prisutnosti fenolnih spojeva ispitivano je antioksidativno djelovanje i sposobnost hvatanja slobodnih radikala metanolnog ekstrakta plodova. Koncentracija 2500 µg mL1 imala je najjači učinak
Recommended from our members
Executive Summary of the Workshop on Polarization and Beam Energy Measurements at the ILC
This note summarizes the results of the 'Workshop on Polarization and Beam Energy Measurements at the ILC', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (1) physics requirements, (2) polarized sources and low energy polarimetry, (3) BDS polarimeters, (4) BDS energy spectrometers, and (5) physics-based measurements of beam polarization and beam energy from collider data. Discussions focused on the current ILC baseline program as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarization of P{sub e{sup -}} {approx}> 80% and positron polarization of P{sub e{sup +}} {approx}> 30% are part of the baseline configuration of the machine. Energy and polarization measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed
- …