46 research outputs found

    An essential role for decorin in bladder cancer invasiveness

    Get PDF
    Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.Fil: El Behi, Mohamed. Institute Curie; Francia. Centre de Recherche de I; Francia. Inserm; FranciaFil: Krumeich, Sophie. Institute Curie; Francia. Inserm; FranciaFil: Lodillinsky, Catalina. Institute Curie; Francia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kamoun, Aurélie. Institute Curie; FranciaFil: Tibaldi, Lorenzo. Institute Curie; Francia. Inserm; FranciaFil: Sugano, Gaël. Institute Curie; Francia. Inserm; FranciaFil: de Reynies, Aurélien. Ligue Nationale Contre le Cancer; FranciaFil: Chapeaublanc, Elodie. Institute Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Laplanche, Agnès. Centre National de la Recherche Scientifique; Francia. Institut de Cancérologie Gustave Roussy; FranciaFil: Lebret, Thierry. Hôpital Foch. Service d; Francia. Université de Versailles; FranciaFil: Allory, Yves. Inserm; FranciaFil: Radvanyi, François. Institute Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Lantz, Olivier. Institute Curie; Francia. Inserm; FranciaFil: Eijan, Ana Maria. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bernard Pierrot, Isabelle. Institute Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Théery, Clotilde. Institute Curie; Francia. Inserm; Franci

    Large-scale pan-cancer analysis reveals broad prognostic association between TGF-β ligands, not Hedgehog, and GLI1/2 expression in tumors

    No full text
    International audienceGLI1 expression is broadly accepted as a marker of Hedgehog pathway activation in tumors. Efficacy of Hedgehog inhibitors is essentially limited to tumors bearing activating mutations of the pathway. GLI2, a critical Hedgehog effector, is necessary for GLI1 expression and is a direct transcriptional target of TGF-β/SMAD signaling. We examined the expression correlations of GLI1/2 with TGFB and HH genes in 152 distinct transcriptome datasets totaling over 23,500 patients and representing 37 types of neoplasms. Their prognostic value was measured in over 15,000 clinically annotated tumor samples from 26 tumor types. In most tumor types, GLI1 and GLI2 follow a similar pattern of expression and are equally correlated with HH and TGFB genes. However, GLI1/2 broadly share prognostic value with TGFB genes and a mesenchymal/EMT signature, not with HH genes. Our results provide a likely explanation for the frequent failure of anti-Hedgehog therapies in tumors, as they suggest a key role for TGF-β, not Hedgehog, ligands, in tumors with elevated GLI1/2-expression

    An array CGH based genomic instability index (G2I) is predictive of clinical outcome in breast cancer and reveals a subset of tumors without lymph node involvement but with poor prognosis

    No full text
    Abstract Background Despite entering complete remission after primary treatment, a substantial proportion of patients with early stage breast cancer will develop metastases. Prediction of such an outcome remains challenging despite the clinical use of several prognostic parameters. Several reports indicate that genomic instability, as reflected in specific chromosomal aneuploidies and variations in DNA content, influences clinical outcome but no precise definition of this parameter has yet been clearly established. Methods To explore the prognostic value of genomic alterations present in primary tumors, we performed a comparative genomic hybridization study on BAC arrays with a panel of breast carcinomas from 45 patients with metastatic relapse and 95 others, matched for age and axillary node involvement, without any recurrence after at least 11 years of follow-up. Array-CGH data was used to establish a two-parameter index representative of the global level of aneusomy by chromosomal arm, and of the number of breakpoints throughout the genome. Results Application of appropriate thresholds allowed us to distinguish three classes of tumors highly associated with metastatic relapse. This index used with the same thresholds on a published set of tumors confirms its prognostic significance with a hazard ratio of 3.24 [95CI: 1.76-5.96] p = 6.7x10-5 for the bad prognostic group with respect to the intermediate group. The high prognostic value of this genomic index is related to its ability to individualize a specific group of breast cancers, mainly luminal type and axillary node negative, showing very high genetic instability and poor outcome. Indirect transcriptomic validation was obtained on independent data sets. Conclusion Accurate evaluation of genetic instability in breast cancers by a genomic instability index (G2I) helps individualizing specific tumors with previously unexpected very poor prognosis.</p

    An array CGH based genomic instability index (G2I) is predictive of clinical outcome in breast cancer and reveals a subset of tumors without lymph node involvement but with poor prognosis.

    Get PDF
    International audienceABSTRACT: BACKGROUND: Despite entering complete remission after primary treatment, a substantial proportion of patients with early stage breast cancer will develop metastases. Prediction of such an outcome remains challenging despite the clinical use of several prognostic parameters. Several reports indicate that genomic instability, as reflected in specific chromosomal aneuploidies and variations in DNA content, influences clinical outcome but no precise definition of this parameter has yet been clearly established. METHODS: To explore the prognostic value of genomic alterations present in primary tumors, we performed a comparative genomic hybridization study on BAC arrays with a panel of breast carcinomas from 45 patients with metastatic relapse and 95 others, matched for age and axillary node involvement, without any recurrence after at least 11 years of follow-up. Array-CGH data was used to establish a two-parameter index representative of the global level of aneusomy by chromosomal arm, and of the number of breakpoints throughout the genome. RESULTS: Application of appropriate thresholds allowed us to distinguish three classes of tumors highly associated with metastatic relapse. This index used with the same thresholds on a published set of tumors confirms its prognostic significance with a hazard ratio of 3.24 [95CI: 1.76-5.96] p = 6.7x10-5 for the bad prognostic group with respect to the intermediate group. The high prognostic value of this genomic index is related to its ability to individualize a specific group of breast cancers, mainly luminal type and axillary node negative, showing very high genetic instability and poor outcome. Indirect transcriptomic validation was obtained on independent data sets. CONCLUSION: Accurate evaluation of genetic instability in breast cancers by a genomic instability index (G2I) helps individualizing specific tumors with previously unexpected very poor prognosis
    corecore