6 research outputs found

    Effets d'irradiation et diffusion des produits de fission (césium et iode) dans le carbure de silicium

    Get PDF
    Silicon carbide is envisaged as a cladding material for the nuclear fuel in the fourth generation reactors. The aim of this work is to study the capacity to retain fission products and the structure evolution of this material under the combined effects of temperature and irradiation. The low energy ion implantations and the incorporation of stable analogues of fission products (Cs and I) in single crystalline 6H-SiC samples were performed by using the ion implanter or the accelerator of the CSNSM. The high energy heavy ion irradiations were made at GANIL. The evolution of the implanted ion profiles and the crystal structure were studied by RBS and Channeling. Complementary information were obtained by using the UV-visible absorption spectroscopy. The low energy ion implantations at room temperature induce a fast structural damage in the crystal. On the other hand, it is possible to attain a small disorder rate in the crystal during implantation by increasing the implantation temperature (600 °C). The high energy heavy ion irradiations do not damage the SiC crystals. On the contrary, they cause an annealing of the disorder created by the low energy implantations. The implanted ions (I) do not diffuse during low or high energy ion irradiations at room temperature and at 600 °C. However, a diffusion of Cs ions was observed during a post-implantation annealing at 1300 °C. At this temperature, the crystal which had an extended amorphous layer starts to recover a single-crystal structure.Le carbure de silicium est un matériau envisagé pour le conditionnement du combustible dans les réacteurs de quatrième génération. Ce travail a pour objectif d'étudier la capacité de confinement des produits de fission et l'évolution de la structure de ce matériau sous les effets combinés de la température et du rayonnement. Les implantations d'ions de basse énergie et l'incorporation d'analogues stables de produits de fission (Cs et I) dans des monocristaux de 6H-SiC ont été réalisées sur l'implanteur ou l'accélérateur du CSNSM. Les irradiations avec des ions lourds de haute énergie ont été effectuées au GANIL. L'évolution du profil des ions implantés et de la structure du cristal a été étudiée par RBS et canalisation. Des informations complémentaires ont été apportées par la spectroscopie d'absorption UV-visible. Les implantations d'ions de basse énergie à température ambiante conduisent à l'endommagement rapide du cristal. Par contre, une élévation de la température d'implantation (600 °C) permet de conserver un faible taux de désordre dans le cristal. Les irradiations avec des ions lourds de haute énergie n'endommagent pas les cristaux de SiC mais au contraire, elles provoquent une guérison du désordre créé préalablement par l'implantation d'ions I de basse énergie. Ces marqueurs d'iode ne diffusent pas lors d'irradiations avec des ions lourds de basse ou de haute énergie à température ambiante ou à 600 °C. Cependant, une diffusion des ions Cs a été observée lors d'un recuit thermique post-implantation à 1300 °C, température à laquelle le cristal qui comportait une couche amorphe étendue commence à retrouver une structure monocristalline

    Effets d irradiation et diffusion des produits de fission (césium et iode) dans le carbure de silicium

    No full text
    CAEN-BU Sciences et STAPS (141182103) / SudocSudocFranceF

    Mechanism of the swift heavy ion induced epitaxial recrystallization in predamaged silicon carbide

    No full text
    International audienceAlthough silicon carbide has attracted extensive investigations of ion irradiation effects at low energy owing to its potential use in harsh environments, very few works were carried out in the field of ion irradiation at high energy. A recent preliminary study exploring the combination of low and high energy ion irradiation effects in silicon carbide revealed that the damaged layer formed by low energy ion irradiation can undergo an epitaxial recrystallization under subsequent swift heavy ion irradiation. The present paper is devoted to the investigation of the mechanisms at the origin of this phenomenon by performing additional experiments. A detailed analysis of the kinetics of this recrystallization effect demonstrates that the latter cannot be explained by the models proposed for the well-known ion-beam-induced epitaxial crystallization process. Furthermore, it is found that this effect can be accounted for by a mechanism combining the melting within the ion tracks of the amorphous zones through a thermal spike process and their subsequent epitaxial recrystallization initiated from the neighboring crystalline regions wherever the size of the latter surpasses a certain critical value

    Manganese in 4H-SiC

    No full text

    Ion implantation of iodine into silicon carbide: Influence of temperature on the produced damage and on the diffusion behaviour

    No full text
    International audienceSilicon carbide (SiC) is anticipated as a potential cladding material for the nuclear fuel in the future high-temperature gas cooled nuclear reactors. In such a harsh environment, SiC will be submitted to energetic particles giving rise to atomic displacements which can alter its retention capability for the fission products. The aim of the present work is to examine the effects induced by the implantation of a typical fission product, namely iodine (I), into SiC at different temperatures and to study its diffusion behaviour under temperature and ion post-irradiation. Ion implantations at 400 or 600 °C produce significantly less damage than implantation at room temperature followed by subsequent thermal annealing. In addition, there is no noticeable change in the I distribution profile even after thermal annealing up to 1000 °C or after post-irradiation at 600 °C with energetic heavy ions

    Effects of electronic and nuclear interactions in SiC

    Get PDF
    International audienceIn this study, we performed irradiation experiments on nanostructured 3C–SiC samples, with 95 MeV Xe ions at room temperature. This energy permits the observation of the combined electronic and nuclear interactions with matter. The grazing incidence X-ray diffraction results do not reveal a complete amorphization, despite value of displacement per atom overcoming the total amorphization threshold. This may be attributed to competing effects between nuclear and electronic energy loss in this material since a total amorphization induced by nuclear interactions was found after low energy ion irradiation (4 MeV Au). Moreover, electronic interactions created by high energy ion irradiations induce no disorder in single crystalline 6H–SiC. But in samples previously disordered by low energy ion implantation (700 keV I), the electronic interactions generate a strong defects recovery
    corecore