77 research outputs found
Treatment of a Complex Distal Triceps Tendon Rupture With a New Technique: A Case Report
Introduction: The distal triceps tendon rupture is an uncommon injury. The acute treatment is well-defined, but when a delayed diagnosis is made or when a tendon retraction is present the alternatives or reconstruction are limited and sometimes complex.
Case Presentation: In this case, we report on a 28-year-old man who presented with a chronic disruption of the distal triceps tendon with a gap of approximately 15 cm. The patient was diagnosed in another center with an inveterate breakage of the distal triceps tendon and was initially treated with an Achilles allograft that was complicated by a wound infection and required more than ten surgeries. Nearly 22 months after the initial trauma, and 12 months after the first surgery, we performed a reconstruction with an Achilles tendon allograft using the new technique of distal attachment. At the 12-month follow-up the patient presented a joint balance from -5Âş to 110Âş and presented with no pain.
Conclusions: The use of an Achilles tendon allograft provides excellent results in complex distal triceps tendon ruptures. We report the use of a new technique to anchor a distal Achilles allograft
A review on multi-robot systems: current challenges for operators and new developments of interfaces
[ES] Los sistemas multi-robot estĂĄn experimentando un gran desarrollo en los Ăşltimos tiempos, ya que mejoran el rendimiento de las misiones actuales y permiten realizar nuevos tipos de misiones. Este artĂculo analiza el estado del arte de los sistemas multi-robot, abordando un conjunto de temas relevantes: misiones, flotas, operadores, interacciĂłn humano-sistema e interfaces. La revisiĂłn se centra en los retos relacionados con factores humanos como la carga de trabajo o la conciencia de la situaciĂłn, asĂ como en las propuestas de interfaces adaptativas e inmersivas para solucionarlos.[EN] Multi-robot systems are experiencing great development in recent times, since they are improving the performance of current missions and allowing new types of missions. This article analyzes the state of the art of multi-robot systems, addressing a set of relevant topics: missions, fleets, operators, human-system interaction and interfaces. The review focuses on the challenges related to human factors such as workload and situational awareness, as well as the proposals of adaptive and immersive interfaces to solve them.Esta investigaciĂłn ha recibido fondos de los proyectos SAVIER (Situational Awareness VIrtual
EnviRonment) de Airbus; RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/
NMT-4331, financiado por los Programas de Actividades I+D de la Comunidad de Madrid y confinanciado por los Fondos Estructurales de la UE; y DPI2014-56985-R (ProtecciĂłn Robotizada de Infraestructuras CrĂticas) financiado por el ministerio de EconomĂa y Competitividad
del Gobierno de EspaĂąa.Roldan-GĂłmez, JJ.; De LeĂłn Rivas, J.; Garcia-Aunon, P.; Barrientos, A. (2020). Una revisiĂłn de los sistemas multi-robot: desafĂos actuales para los operadores y nuevos desarrollos de interfaces. Revista Iberoamericana de AutomĂĄtica e InformĂĄtica industrial. 17(3). https://doi.org/10.4995/riai.2020.13100OJS305173Abbadi, A. and Prenosil., 2015. Safe path planning using cell decomposition approximation. Distance Learning, Simulation and Communication, 8.Adams, B. and Suykens, F., 2013 Astute: Increased Situational Awareness through proactive decision support and adaptive map-centric user interfaces. 2013 IEEE European Intelligence and Security Informatics Conference (EISIC), 289-293. https://doi.org/10.1109/EISIC.2013.74Almeida, L., Menezes, P. and Dias, J., 2017. Improving robot teleoperation experience via immersive interfaces. In 2017 4th IEEE Experiment@ International Conference (exp. at'17), 87-92. https://doi.org/10.1109/EXPAT.2017.7984414Arnold, K. P., 2016. The UAV Ground Control Station: Types, Components, Safety, Redundancy, and Future Applications. International Journal of Unmanned Systems Engineering., 4(1), 37.Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B. and Onaral, B., 2012. Optical brain monitoring for operator training and mental workload assessment. Neuroimage, 59(1), 36-47. https://doi.org/10.1016/j.neuroimage.2011.06.023Beer, J., Fisk, A. D. and Rogers, W. A., 2014. Toward a framework for levels of robot autonomy in human-robot interactions. Journal of Human-Robot Interaction, 3(2), 74. https://doi.org/10.5898/JHRI.3.2.BeerBourguet, M. L., 2003. Designing and Prototyping Multimodal Commands. Interact, 3, 717-720.Brutschy, A., Pini, G., Pinciroli, C., Birattari, M. and Dorigo, M., 2014. Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous agents and multi-agent systems, 28(1), 101-125. https://doi.org/10.1007/s10458-012-9212-yCantelli, L., Mangiameli, M., Melita, C. D. and Muscato, G., 2013. UAV/UGV cooperation for surveying operations in humanitarian demining. 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR),1-6). https://doi.org/10.1109/SSRR.2013.6719363Chang, H. and Jin, T., 2013. Command fusion based fuzzy controller design for moving obstacle avoidance of mobile robot. Future information communication technology and applications, Springer, 905-913. https://doi.org/10.1007/978-94-007-6516-0_99Chen, J. Y. C., Haas, E. C. and Barnes, M. J., 2007. Human performance issues and user interface design for teleoperated robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1231-1245. https://doi.org/10.1109/TSMCC.2007.905819Chen, J. Y. C., Barnes, M. J. and Harper-Sciarini, M., 2011. Supervisory control of multiple robots: Human-performance issues and user-interface design. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications an Reviews), 41(4), 435-454. https://doi.org/10.1109/TSMCC.2010.2056682Clark, C. M., 2005. Probabilistic road map sampling strategies for multi-robot motion planning. Robotics and Autonomous Systems, 53(3), 244-264. https://doi.org/10.1016/j.robot.2005.09.002Cummings, M. L., Bruni, S., Mercier, S. and Mitchell, P. J., 2007. Automation architecture for single operator, multiple UAV command and control. Tech. Rep DTIC Document.Cummings, M. L. and Mitchell P. J., 2008. Predicting controller capacity in supervisory control of multiple UAVs. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(2), 451-460. https://doi.org/10.1109/TSMCA.2007.914757Cummings, M. L., Mastracchio, C., Thornburg, K. M. and Mkrtchyan, A., 2013. Boredom and distraction in multiple unmanned vehicle supervisory control. Interacting with computers, 25(1), 34-47. https://doi.org/10.1093/iwc/iws011De Cubber, G., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R. and Ourevitch, S., 2013. The EU-ICARUS project: developing assistive robotic tools for search and rescue operations. 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR), 1-4. https://doi.org/10.1109/SSRR.2013.6719323De Greeff, J., Hindriks, K., Neerincx, M. A. and Kruijff-Korbayova, I., 2015. Human-robot teamwork in USAR environments: the TRADR project. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts, pp. 151-152. https://doi.org/10.1145/2701973.2702031Dezfoulian, S. H., Wu, D. and Ahmad, I. S., 2013. A generalized neural network approach to mobile robot navigation and obstacle avoidance. Intelligent Autonomous Systems, Springer, 12, 25-52. https://doi.org/10.1007/978-3-642-33926-4_3Di, B., Zhou, R. and Duan, H., 2015. Potential field based receding horizon motion planning for centrality-aware multiple UAV cooperative surveillance. Aerospace Science and Technology, 46, 386-397. https://doi.org/10.1016/j.ast.2015.08.006Dixon, S. R., Wickens, C. D. and Chang, D, 2005. Mission control of multiple unmanned aerial vehicles: A workload analysis. Human Factors: The Journal of the Human Factors and Ergonomics Society 47(3), 479-487. https://doi.org/10.1518/001872005774860005Donmez, B., Nehme, C. and Cummings, M.L., 2010. Modeling workload impact in multiple unmanned vehicle supervisory control. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(6), 1180-1190. https://doi.org/10.1109/TSMCA.2010.2046731Drury, J. L., Scholtz, J. and Yanco, H.A., 2003. Awareness in human-robot interactions. IEEE International Conference on Systems, Man and Cybernetics, 1, 912-918.Drury, J. L., Riek, L. and Rackliffe, N., 2006A. A decomposition of UAV-related situation awareness. Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, 88-94. https://doi.org/10.1145/1121241.1121258Drury, J. L., Richer, J., Rackliffe, N. and Goodrich, M. A., 2006B. Comparing situation awareness for two unmanned aerial vehicle human interfaces approaches. Technical rpeort, Mitre Corp Bedford MA.Endsley, M. R., 1988A. Design and evaluation for situation awareness enhancement. Proceedings of the human factors and ergonomics society annual meeting, SAGE Publications, 32(2), 97-101. https://doi.org/10.1177/154193128803200221Endsley, M. R., 1988B. Situation awareness global assessment technique (SAGAT). Proceedings of the IEEE 1988 National Aerospace and Electronics Conference (NAECON), 789-795.Endsley, M. R. and Garland, D. J., 2000. Situation awareness analysis and measurement. CRC Press. https://doi.org/10.1201/b12461Endsley M. R., 1999. Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics, 42(3), 462-492. https://doi.org/10.1080/001401399185595Flushing, E. F., Gambardella, L. and Di Caro, G. A., 2012. Gis-based mission support system for wilderness search and rescue with heterogeneous agents. Proc 2nd Workshop on robots and sensors integration in future rescue INformation system (ROSIN), IEEE/RSJ Int Conference on Intelligent Robots and Systems (IROS).Foit, K., 2014. Mixed reality as a tool supporting programming of the robot. Advanced Materials Research, Trans Tech Publications, 1036, 737-742. https://doi.org/10.4028/www.scientific.net/AMR.1036.737Frische, F. and LĂźdtke, A., 2013. SA-tracer: A tool for assessment of UAV swarm operator SA during mission execution. 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 203-211. https://doi.org/10.1109/CogSIMA.2013.6523849Fuchs, C., Borst, C., de Croon, G. C., Van Paassen, M. M. and Mulder, M., 2014. An ecological approach to the supervisory control of UAV swarms. International Journal of Micro Air Vehicles, 6(4), 211-229. https://doi.org/10.1260/1756-8293.6.4.211Galceran, E. and Carreras, M., 2013. A survey on coverage path planning for robotics. Robotics and Autonomous Systems, 61(12), 1258-1276. https://doi.org/10.1016/j.robot.2013.09.004GarcĂa, J. C., PatrĂŁo, B., PĂŠrez, J., Seabra, J., Menezes, P., Dias, J. and Sanz, P.J., 2015. Towards an immersive and natural gesture controlled interface for intervention underwater robots. IEEE OCEANS 2015-Genova, 1-5. https://doi.org/10.1109/OCEANS-Genova.2015.7271501GarcĂa, S. E., SlawiĂąski, E., Mut, V., and Penizzotto, F., 2018. Collision avoidance method for multi-operator multi-robot teleoperation system. Robotica, 36(1), 78-95. https://doi.org/10.1017/S0263574717000169GarzĂłn, M., Valente, J., Zapata, D. and Barrientos, A., 2013. An aerial-ground robotic system for navigation and obstacle mapping in large outdoor areas. Sensors, 13(1), 1247-1267. https://doi.org/10.3390/s130101247GarzĂłn, M., Valente, J., RoldĂĄn, J. J., Cancar, L., Barrientos, A. and Del Cerro, J., 2016. A multirobot system for distributed area coverage and signal searching in large outdoor scenarios. Journal of Field Robotics, 33(8), 1087-1106. https://doi.org/10.1002/rob.21636GarzĂłn, M., Valente, J., RoldĂĄn, J. J., GarzĂłn-Ramos, D., de LeĂłn, J., Barrientos, A. and del Cerro, J., 2017. Using ros in multi-robot systems: Experiences and lessons learned from real-world field tests. In Robot Operating System (ROS), Springer, Cham, 449-483. https://doi.org/10.1007/978-3-319-54927-9_14Goerzen, C., Kong, Z. and Mettler, B., 2009. A survey of motion planning algorithms from the perspective of autonomous UAV guidance. Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, USA, Springer, 64-100. https://doi.org/10.1007/978-90-481-8764-5_5Goodrich, M. A. and Schultz, A. C., 2007. Human-robot interaction: a survey. Foundations and trends in human-computer interaction, 1(3), 203-275. https://doi.org/10.1561/1100000005Gregory, J., Fink, J., Stump, E., Twigg, J., Rogers, J., Baran, D., Fung, N. and Young, S., 2016. Application of multi-robot systems to disaster-relief scenarios with limited communication. In Field and Service Robotics, Springer, Cham, 639-653. https://doi.org/10.1007/978-3-319-27702-8_42Haas, E. C., Pillalamarri, K., Stachowiak, C. C. and Fields, M., 2011. Multimodal controls for soldier/swarm interaction. IEEE RO-MAN, 223-228. https://doi.org/10.1109/ROMAN.2011.6005227Hagiwara, Y., 2015. Cloud based VR system with immersive interfaces to collect multimodal data in human-robot interaction. 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), 256-259. https://doi.org/10.1109/GCCE.2015.7398709Hart, S. G. and Staveland E.L., 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology, 52, 139-183. https://doi.org/10.1016/S0166-4115(08)62386-9Hart, S. G., 2006. NASA-task load index (NASA-TLX); 20 years later. Proceedings of the human factors and ergonomics society annual meeting, Sage Publications Sage CA, Los Angeles, CA, 50(9), 904-908. https://doi.org/10.1177/154193120605000909Hobbs, A. and Herwitz, S. R., 2014. Human factors in the maintenance of unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 58, 66-80. https://doi.org/10.1016/j.apergo.2016.05.011Hocraffer, A. and Nam, C. S. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 58, 66-80. https://doi.org/10.1016/j.apergo.2016.05.011Hong, A., 2016. Human-Robot Interactions for Single Robots and Multi-Robot Teams. PhD thesis, Department of Mechanical and Industrial Engineering, University of Toronto.Janchiv, A., Batsaikhan, D., hwan Kim, G. and Lee, S. G., 2011. Complete coverage path planning for multi-robots based on. 2011 11th IEEE International Conference on Control, Automation and Systems, 824-827.Jasper, P., Sibley, C. and Coyne, J. Using Heart Rate Variability to Assess Operator Mental Workload in a Command and Control Simulation of Multiple Unmanned Aerial Vehicles. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications Sage CA, Los Angeles, CA, 60(1), 1125-1129. https://doi.org/10.1177/1541931213601264Jia, X. and Meng, M. Q. H., 2013. A survey and analysis of task allocation algorithms in multi-robot systems. 2013 IEEE International Conference on Robotics and biomimetics (ROBIO), 2280-2285. https://doi.org/10.1109/ROBIO.2013.6739809Jiang, Y., 2016. A survey of task allocation and load balancing in distributed systems. IEEE Transactions on Parallel and Distributed Systems, 27(2), 585-599. https://doi.org/10.1109/TPDS.2015.2407900Johannsmeier, L. and Haddadin, S., 2016. A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters, 2(1), 41-48. https://doi.org/10.1109/LRA.2016.2535907Kapoutsis, A. C., Chatzichristofis, S. A., Doitsidis, L., de Sousa, J. B., Pinto, J., Braga, J. and Kosmatopoulos, E. B., 2016. Real-time adaptive multi-robot exploration with application to underwater map construction. Autonomous robots, 40(6), 987-1015. https://doi.org/10.1007/s10514-015-9510-8Kavitha, S., Veena, S. and Kumaraswamy, R., 2015. Development of automatic speech recognition system for voice activated Ground Control system. 2015 IEEE International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15), pp. 1-5. https://doi.org/10.1109/ITACT.2015.7492684Khaleghi, A. M., Xu, D., Minaeian, S., Li, M., Yuan, Y., Liu, J., Son, Y. J., Vo, C., Mousavian, A. and Lien, J. M., 2014. A comparative study of control architectures in UAV/UGV-based surveillance system. Proceedings of the IIE Annual Conference, Institute of Industrial and Systems Engineers (IISE), 3455.Khamis, A., Hussein, A. and Elmogy, A., 2015. Multi-robot Task Allocation: A Review of the State-of-the-Art. Cooperative Robots and Sensor Networks, Springer, 31-51. https://doi.org/10.1007/978-3-319-18299-5_2Kirchner, E. A., Kim, S. K., Tabie, M., WĂśhrle, H., Maurus, M. and Kirchner, F., 2016. An intelligent man-machine interface - Multi-robot control adapted for task engagement based on single-trial detectability of P300. Frontiers in human neuroscience, 10, 291. https://doi.org/10.3389/fnhum.2016.00291Kolling, A., Nunnally, S. and Lewis, M., 2012. Towards human control of robot swarms. Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction, 89-96. https://doi.org/10.1145/2157689.2157704Kothari, M., Postlethwaite, I. and Gu, D. W. Multi-UAV path planning in obstacle rich environment using rapidly-exploring random trees. Proceedings of the 48 IEEE Conference on Decision and Control, 3069-3074.Kruijff-KorbayovĂĄ, I., Colas, F., Gianni, M., Pirri, F., de Greeff, J., Hindriks, K., Neerincx, M., Ăgren, P., Svoboda, T. and Worst, R., 2015. Tradr project: Long-term human-robot teaming for robot assisted disaster response. KI-KĂźnstliche Intelligenz, 29(2), 193-201. https://doi.org/10.1007/s13218-015-0352-5Kurniawan, H., Maslov, A. V. and Pechenizkiy, M., 2013. Stress detection from speech and galvanic skin response signals. IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), 209-214. https://doi.org/10.1109/CBMS.2013.6627790Lang, R. G., da Silva, I. N., Romero, R. A. F., 2014. Development of distributed control architecture for multi-robot systems. IEEE 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol, 163-168. https://doi.org/10.1109/SBR.LARS.Robocontrol.2014.49Larochelle, B., Kruijff, G. J. M., Smets, N., Mioch, T. and Groenewegen, P., 2011. Establishing human situation awareness using a multi-modal operator control unit in an urban search & rescue human-robot team, IEEE, 229-234. https://doi.org/10.1109/ROMAN.2011.6005237Lesire, C., Infantes, G., Gateau, T. and Barbier, M., 2016. A distributed architecture for supervision of autonomous multi-robot missions. Autonomous Robots, 40(7), 1343-1362. https://doi.org/10.1007/s10514-016-9603-zLindemuth, M., Murphy, R., Steimle, E., Armitage, W., Dreger, K., Elliot, T., Hall, M., Kalyadin, D., Kramer, J., Palankar, M. and Pratt, K., 2011. Sea robot-assisted inspection. IEEE robotics & automation magazine, 18(2), 96-107. https://doi.org/10.1109/MRA.2011.940994Lysaght, R. J., 1989. Operator workload: Comprehensive review and evaluation of operator workload methodologies. Tech. Rep. DTIC Document. https://doi.org/10.21236/ADA212879MantecĂłn, T., del Blanco, C. R., Jaureguizar, F. and GarcĂa, N., 2014. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition. Unmanned Systems Technology XVI, International Society for Optics and Photonics, 9084. https://doi.org/10.1117/12.2053244Marino, A., Parker, L. E., Antonelli, G. and Caccavale, F., 2013. A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling. Journal of Intelligent & Robotic Systems, 71(3-4), 423-444. https://doi.org/10.1007/s10846-012-9783-5MartĂn-Barrio, A., Terrile, S., Barrientos, A. and del Cerro, J., 2018. Hyper-Redundant Robots: Classification, State-of-the-Art and Issues. Revista Iberoamericana de AutomĂĄtica e InformĂĄtica Industrial, 15(4), 351-362. https://doi.org/10.4995/riai.2018.9207MartĂn-Barrio, A., RoldĂĄn, J. J., Terrile, S., del Cerro, J. and Barrientos, A., 2019. Application of Immersive Technologies and Natural Language to Hyper-Redundant Robot Teleoperation. Virtual Reality, 1-15. https://doi.org/10.1007/s10055-019-00414-9Martins, H., Oakley, I. and Ventura, R., 2015. Design and evaluation of a head-mounted display for immersive 3D teleoperation of field robots. Robotica, 33(10), 2166-2185. https://doi.org/10.1017/S026357471400126XMatellĂĄn, V. and Borrajo, D., 2001. ABC2 an agenda based multi-agent model for robots control and cooperation. Journal of Intelligent & Robotic Systems, 32(1), 93-114. https://doi.org/10.1023/A:1012009429991McCarley, J.S. and Wickens, C. D., 2005. Human factors implications of UAVs in the national airspace. University of Illinois at Urbana-Champaign, Aviation Human Factors Division.McDuff, D., Gontarek, S. and Picard, R., 2014. Remote measurement of cognitive stress via heart rate variability. 36th Annual International Conference on the IEEE Engineering in Medicine and Biology Society (EMBC), 2957-2960. https://doi.org/10.1109/EMBC.2014.6944243Menda, J., Hing, J. T., Ayaz, H., Shewokis, P. A., Izzetoglu, K., Onaral, B. and Oh, P., 2011. Optical brain imaging to enhance UAV operator training, evaluation, and interface development. Journal of intelligent & robotic systems, 61(1-4), 423-443. https://doi.org/10.1007/s10846-010-9507-7Monajjemi, V. M., Pourmehr, S., Sadat, S. A., Zhan, F., Wawerla, J., Mori, G. and Vaughan, R., 2014. Integrating multi-modal interfaces to command UAVs. Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction, 106-106. https://doi.org/10.1145/2559636.2559646Moore, J., Wolfe, K. C., Johannes, M. S., Katyal, K. D., Para, M. P., Murphy, R. J., Hatch, J., Taylor, C. J., Bamberger, R. J. and Tunstel, E., 2016. Nested marsupial robotic system for search and sampling in increasingly constrained environments. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2279-2286 https://doi.org/10.1109/SMC.2016.7844578Mosteo, A. R. and Montano, L., 2010. A survey of multi-robot task allocation. Technical Report No. AMI-009-10-TEC, Instituto de InvestigaciĂłn en IngenierĂa de AragĂłn, University of Zaragoza, Zaragoza, Spain.Murphy, R. R., 2004. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 34(2), 138-153. https://doi.org/10.1109/TSMCC.2004.826267Nagi, J., Giusti, A., Di Caro, G. A. and Gambardella, L. M., 2014. Human control of UAVs using face pose estimates and hand gestures. 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 1-2. https://doi.org/10.1145/2559636.2559644Nam, C. S., Johnson, S., Li, Y. and Seong, Y., 2009. Evaluation of human-agent user interfaces in multi-agent systems. International Journal of Industrial Ergonomics, 39(1), 192-201. https://doi.org/10.1016/j.ergon.2008.08.008Nestmeyer, T., Giordano, P. R., BĂźlthoff, H. H. and Franchi, A., 201
Practical applications using multi-UAV systems and aerial robotic swarms
[EN] Nowadays, there are a large number of unmanned aircraft on the market that can be commanded with high-level orders to perform complex tasks almost automatically, such as mapping crop fields. We can ask ourselves if it would be possible to coordinate a group of these robots to perform those same tasks more quickly, flexibly and robustly. In this work, we summarize the tasks that have been studied to be solved with systems composed by groups of unmanned aircraft and the algorithms used, as well as the methods and strategies on which they are based. Although the future of these systems is promising, there are certain legislative and technical obstacles that stop their implementation in a generalized way.[ES] A dĂa de hoy, existen en el mercado una gran cantidad de aeronaves sin piloto que pueden ser comandadas con ordenes de alto nivel para realizar tareas complejas de forma casi automatica, como por ejemplo el mapeo de explotaciones agrĂcolas. De forma natural, nos podemos preguntar si serĂa posible coordinar a un grupo de estos robots para realizar esas mismas tareas de forma mĂĄs rĂĄpida, flexible y robusta. En este trabajo se repasan las tareas que se han planteado resolver con sistemas compuestos por grupos de aeronaves no tripuladas y los algoritmos empleados, asĂ como los metodos y estrategias en los que estĂĄn basados. Aunque el futuro de estos sistemas es prometedor, existen ciertos obstaculos legislativos y tĂŠcnicos que frenan su implantaciĂłn de forma generalizada.Las investigaciones que han dado como resultado este trabajo han sido financiadas por RoboCity2030-DIH-CM, 426 Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, financiadas por los Programas de Actividades I+D en la Comunidad Madrid, y por el proyecto TASAR (Team of Advanced Search And Rescue Robots), PID2019-105808RB-I00, financiado por el Ministerio de Ciencia e Innovacion (Gobierno de EspaĂąa).GarcĂa-Aunon, P.; RoldĂĄn, J.; De LeĂłn, J.; Del Cerro, J.; Barrientos, A. (2021). Aplicaciones practicas de los sistemas multi-UAV y enjambres aĂŠreos. Revista Iberoamericana de AutomĂĄtica e InformĂĄtica industrial. 18(3):230-241. https://doi.org/10.4995/riai.2020.13560OJS230241183Acevedo, J. J., Arrue, B. C., Maza, I., Ollero, A., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. Journal of Intelligent & Robotic Systems 70 (1-4), 329-345. https://doi.org/10.1007/s10846-012-9716-3Albani, D., IJsselmuiden, J., Haken, R., Trianni, V., 2017. Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, pp. 1-6. https://doi.org/10.1109/AVSS.2017.8078478Alvear, O., Zema, N. R., Natalizio, E., Calafate, C. T., 2017. Using uav-based systems to monitor air pollution in areas with poor accessibility. Journal of Advanced Transportation 2017. https://doi.org/10.1155/2017/8204353Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., Willmann, J. S., Gramazio, F., Kohler, M., D'Andrea, R., 2014. The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine 34 (4), 46-64. https://doi.org/10.1109/MCS.2014.2320359Barrientos, A., Colorado, J., Cerro, J. d., Martinez, A., Rossi, C., Sanz, D., Valente, J., 2011. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics 28 (5), 667-689. https://doi.org/10.1002/rob.20403Beck, Z., Teacy, W. L., Rogers, A., Jennings, N. R., 2018. Collaborative online planning for automated victim search in disaster response. Robotics and Autonomous Systems 100, 251-266. https://doi.org/10.1016/j.robot.2017.09.014Bennet, D. J., MacInnes, C., Suzuki, M., Uchiyama, K., 2011. Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles. Journal of guidance, control, and dynamics 34 (6), 1899-1908. https://doi.org/10.2514/1.53931Bernard, M., Kondak, K., Maza, I., Ollero, A., 2011. Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics 28 (6), 914-931. https://doi.org/10.1002/rob.20401Carrasco, Ă. M., Novoa, S. C., Al-Kaff, A., FernĂĄndez, F. G., GĂłmez, D. M., de la Escalera Hueso, A., 2020. VehĂculo aĂŠreo no tripulado para vigilancia y monitorizaciĂłn de incendios. Revista Iberoamericana de AutomĂĄtica e InformĂĄtica industrial.Chen, S., Li, C., Zhuo, S., 2017. A distributed coverage algorithm for multiuav with average voronoi partition. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS). IEEE, pp. 1083-1086. https://doi.org/10.23919/ICCAS.2017.8204377Cieslewski, T., Choudhary, S., Scaramuzza, D., 2018. Data-efficient decentralized visual slam. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2466-2473. https://doi.org/10.1109/ICRA.2018.8461155Cimino, M. G., Lazzeri, A., Vaglini, G., 2015. Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, pp. 1-6. https://doi.org/10.1109/IISA.2015.7387990Cledat, E., Cucci, D., 2017. Mapping gnss restricted environments with a drone tandem and indirect position control. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4, 1. https://doi.org/10.5194/isprs-annals-IV-2-W3-1-2017Cole, D. T., Thompson, P., GĂśktogan, A. H., Sukkarieh, S., 2010. System development and demonstration of a cooperative uav team for mapping and tracking. The International Journal of Robotics Research 29 (11), 1371-1399. https://doi.org/10.1177/0278364910364685Darrah, M., Trujillo, M. M., Speransky, K., Wathen, M., 2017. Optimized 3d mapping of a large area with structures using multiple multirotors. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 716-722. https://doi.org/10.1109/ICUAS.2017.7991414Erignac, C., 2007. An exhaustive swarming search strategy based on distributed pheromone maps. In: AIAA Infotech@ Aerospace 2007 Conference and Exhibit. p. 2822. https://doi.org/10.2514/6.2007-2822Fu, Z., Chen, Y., Ding, Y., He, D., 2019. Pollution source localization based on multi-uav cooperative communication. IEEE Access 7, 29304-29312. https://doi.org/10.1109/ACCESS.2019.2900475Fujisawa, R., Imamura, H., Hashimoto, T., Matsuno, F., 2008. Communication using pheromone field for multiple robots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1391-1396. https://doi.org/10.1109/IROS.2008.4650971Garcia-Aunon, P., Barrientos, A., 2018a. Comparison of heuristic algorithms in discrete search and surveillance tasks using aerial swarms. Applied Sciences 8 (5), 711. https://doi.org/10.3390/app8050711Garcia-Aunon, P., Barrientos, A., 2018b. Control optimization of an aerial robotic swarm in a search task and its adaptation to different scenarios. Journal of computational science 29, 107-118. https://doi.org/10.1016/j.jocs.2018.10.004Garcia-Aunon, P., del Cerro, J., Barrientos, A., 2019a. Behavior-based control for an aerial robotic swarm in surveillance missions. Sensors 19 (20), 4584. https://doi.org/10.3390/s19204584Garcia-Aunon, P., Roldan, J. J., Barrientos, A., 2019b. Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm. Cognitive Systems Research 54, 273-286. https://doi.org/10.1016/j.cogsys.2018.10.031Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G., 2007. Alice in pheromone land: An experimental setup for the study of ant-like robots. In: 2007 IEEE Swarm Intelligence Symposium. IEEE, pp. 37-44. https://doi.org/10.1109/SIS.2007.368024George, J., Sujit, P., Sousa, J. B., 2011. Search strategies for multiple uav search and destroy missions. Journal of Intelligent & Robotic Systems 61 (1-4), 355-367. https://doi.org/10.1007/s10846-010-9486-8Hadaegh, F. Y., Chung, S.-J., Manohara, H. M., 2014. On development of 100- gram-class spacecraft for swarm applications. IEEE Systems Journal 10 (2), 673-684. https://doi.org/10.1109/JSYST.2014.2327972Han, J., Xu, Y., Di, L., Chen, Y., 2013. Low-cost multi-uav technologies for contour mapping of nuclear radiation field. Journal of Intelligent & Robotic Systems 70 (1-4), 401-410. https://doi.org/10.1007/s10846-012-9722-5Hauert, S., Winkler, L., Zufferey, J.-C., Floreano, D., 2008. Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intelligence 2 (2-4), 167-188. https://doi.org/10.1007/s11721-008-0013-5Hinzmann, T., Stastny, T., Conte, G., Doherty, P., Rudol, P., Wzorek, M., Galceran, E., Siegwart, R., Gilitschenski, I., 2016. Collaborative 3d reconstruction using heterogeneous uavs: System and experiments. In: International Symposium on Experimental Robotics. Springer, pp. 43-56. https://doi.org/10.1007/978-3-319-50115-4_5Ju, C., Son, H., 2018. Multiple uav systems for agricultural applications: control, implementation, and evaluation. Electronics 7 (9), 162. https://doi.org/10.3390/electronics7090162Kim, J. H., Kwon, J.-W., Seo, J., 2014. Multi-uav-based stereo vision system without gps for ground obstacle mapping to assist path planning of ugv. Electronics Letters 50 (20), 1431-1432. https://doi.org/10.1049/el.2014.2227Lanillos, P., Gan, S. K., Besada-Portas, E., Pajares, G., Sukkarieh, S., 2014. Multi-uav target search using decentralized gradient-based negotiation with expected observation. Information Sciences 282, 92-110. https://doi.org/10.1016/j.ins.2014.05.054Li, W., 2015. Persistent surveillance for a swarm of micro aerial vehicles by flocking algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 (1), 185-194. https://doi.org/10.1177/0954410014529100Lyu, Y., Pan, Q., Zhang, Y., Zhao, C., Zhu, H., Tang, T., Liu, L., 2015. Simultaneously multi-uav mapping and control with visual servoing. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 125-131. https://doi.org/10.1109/ICUAS.2015.7152283Mahdoui, N., FrĂŠmont, V., Natalizio, E., 2017. Cooperative exploration strategy for micro-aerial vehicles fleet. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). IEEE, pp. 180-185. https://doi.org/10.1109/MFI.2017.8170426Maza, I., Ollero, A., 2007. Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6. Springer, pp. 221-230. https://doi.org/10.1007/978-4-431-35873-2_22Mirjan, A., Gramazio, F., Kohler, M., Augugliaro, F., D'Andrea, R., 2013. Architectural fabrication of tensile structures with flying machines. Green Design, Materials and Manufacturing Processes, 513-518. https://doi.org/10.1201/b15002-99Niedzielski, T., Jurecka, M., Mizinski, B., Remisz, J., Slopek, J., Spallek, W., Witek-Kasprzak, M., Kasprzak, Ĺ., Swierczynska-Chlasciak, M., 2018. A real-time field experiment on search and rescue operations assisted by unmanned aerial vehicles. Journal of Field Robotics 35 (6), 906-920. https://doi.org/10.1002/rob.21784Nigam, N., Bieniawski, S., Kroo, I., Vian, J., 2011. Control of multiple uavs for persistent surveillance: algorithm and flight test results. IEEE Transactions on Control Systems Technology 20 (5), 1236-1251. https://doi.org/10.1109/TCST.2011.2167331Odonkor, P., Ball, Z., Chowdhury, S., 2019. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping. Swarm and Evolutionary Computation 46, 52-68. https://doi.org/10.1016/j.swevo.2019.01.005Oh, S.-H., Suk, J., 2010. Evolutionary design of the controller for the search of area with obstacles using multiple uavs. In: ICCAS 2010. IEEE, pp. 2541- 2546. https://doi.org/10.1109/ICCAS.2010.5670230Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A., Jesus, M., 2018. Ant colony optimization for multi-uav minimum time search in uncertain domains. Applied Soft Computing 62, 789-806. https://doi.org/10.1016/j.asoc.2017.09.009Qu, Y., Zhang, Y., Zhang, Y., 2015. A uav solution of regional surveillance based on pheromones and artificial potential field theory. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 380-385. https://doi.org/10.1109/ICUAS.2015.7152313Rastgoftar, H., Atkins, E. M., 2018. Cooperative aerial lift and manipulation (calm). Aerospace Science and Technology 82, 105-118. https://doi.org/10.1016/j.ast.2018.09.005Reina, D., Tawfik, H., Toral, S., 2018. Multi-subpopulation evolutionary algorithms for coverage deployment of uav-networks. Ad Hoc Networks 68, 16-32. https://doi.org/10.1016/j.adhoc.2017.09.005Reuder, J., Jonassen, M. O., Olafsson, H., 2012. The small unmanned meteorological observer sumo: Recent developments and applications of a micro-uas for atmospheric boundary layer research. Acta Geophysica 60 (5), 1454- 1473. https://doi.org/10.2478/s11600-012-0042-8Reynolds, C. W., 1987. Flocks, herds and schools: A distributed behavioral model. Vol. 21. ACM. https://doi.org/10.1145/37402.37406Roldan, J. J., Garcia-Aunon, P., PeĂąa-Tapia, E., Barrientos, A., 2019. Swarm-city project: Can an aerial swarm monitor traffic in a smart city? In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, pp. 862-867. https://doi.org/10.1109/PERCOMW.2019.8730677Santamaria, E., Segor, F., Tchouchenkov, I., 2013. Rapid aerial mapping with multiple heterogeneous unmanned vehicles. In: ISCRAM. Citeseer.Saska, M., Chudoba, J., Preucil, L., Thomas, J., Loianno, G., Tresnak, A., Vonasek, V., Kumar, V., 2014. Autonomous deployment of swarms of microaerial vehicles in cooperative surveillance. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 584-595. https://doi.org/10.1109/ICUAS.2014.6842301Savkin, A. V., Huang, H., 2019. Asymptotically optimal deployment of drones for surveillance and monitoring. Sensors 19 (9), 2068. https://doi.org/10.3390/s19092068Schilling, F., Lecoeur, J., Schiano, F., Floreano, D., 2018. Learning visionbased cohesive flight in drone swarms. arXiv preprint arXiv:1809.00543.Schmuck, P., Chli, M., 2017. Multi-uav collaborative monocular slam. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3863-3870. https://doi.org/10.1109/ICRA.2017.7989445Silic, M. B., Song, Z., Mohseni, K., 2018. Anisotropic flocking control of distributed multi-agent systems using fluid abstraction. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace. p. 2262. https://doi.org/10.2514/6.2018-2262Sreenath, K., Kumar, V., 2013. Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. rn 1 (r2), r3. https://doi.org/10.15607/RSS.2013.IX.011St-Onge, D., Kaufmann, M., Panerati, J., Ramtoula, B., Cao, Y., Coffey, E. B., Beltrame, G., 2019. Planetary exploration with robot teams. IEEE Robotics & Automation Magazine.Stavros, E. N., Agha, A., Sirota, A., Quadrelli, M., Ebadi, K., Yun, K., 2019. Smoke sky-exploring new frontiers of unmanned aerial systems for wildland fire science and applications. arXiv preprint arXiv:1911.08288.Techy, L., Schmale III, D. G., Woolsey, C. A., 2010. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles. Journal of Field Robotics 27 (3), 335-343. https://doi.org/10.1002/rob.20335Tuna, G., Nefzi, B., Conte, G., 2014. Unmanned aerial vehicle-aided communications system for disaster recovery. Journal of Network and Computer Applications 41, 27-36. https://doi.org/10.1016/j.jnca.2013.10.002Twidwell, D., Allen, C. R., Detweiler, C., Higgins, J., Laney, C., Elbaum, S., 2016. Smokey comes of age: unmanned aerial systems for fire management. Frontiers in Ecology and the Environment 14 (6), 333-339. https://doi.org/10.1002/fee.1299Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N., Szorenyi, T., Nepusz, T., Vicsek, T., 2014. Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 3866-3873. https://doi.org/10.1109/IROS.2014.6943105Verdu, T., Hattenberger, G., Lacroix, S., 2019. Flight patterns for clouds exploration with a fleet of uavs. https://doi.org/10.1109/ICUAS.2019.8797953Waharte, S., Trigoni, N., 2010. Supporting search and rescue operations with uavs. In: 2010 International Conference on Emerging Security Technologies. IEEE, pp. 142-147. https://doi.org/10.1109/EST.2010.31Wang, Z., Singh, S., Pavone, M., Schwager, M., 2018. Cooperative object transport in 3d with multiple quadrotors using no peer communication. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1064-1071. https://doi.org/10.1109/ICRA.2018.8460742Zhao, N., Lu, W., Sheng, M., Chen, Y., Tang, J., Yu, F. R., Wong, K.-K., 2019. Uav-assisted emergency networks in disasters. IEEE Wireless Communications 26 (1), 45-51. https://doi.org/10.1109/MWC.2018.1800160Zheng, X., Wang, F., Li, Z., 2018. A multi-uav cooperative route planning methodology for 3d fine-resolution building model reconstruction. ISPRS journal of photogrammetry and remote sensing 146, 483-494. https://doi.org/10.1016/j.isprsjprs.2018.11.00
Track D Social Science, Human Rights and Political Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
SwarmCity project: monitoring traffic, pedestrians, climate, and pollution with an aerial robotic swarm: Data collection and fusion in a smart city, and its representation using virtual reality
Smart cities have emerged as a strategy to solve problems that current cities face, such as traffic, security, resource management, waste, and pollution. Most of the current approaches are based on deploying large numbers of sensors throughout the city and have some limitations to get relevant and updated data. In this paper, as an extension of our previous investigations, we propose a robotic swarm to collect the data of traffic, pedestrians, climate, and pollution. This data is sent to a base station, where it is treated to generate maps and presented in an immersive interface. To validate these developments, we use a virtual city called SwarmCity with models of traffic, pedestrians, climate, and pollution based on real data. The whole system has been tested with several subjects to assess whether the information collected by the drones, processed in the base station, and represented in the virtual reality interface is appropriate. Results show that the complete solution, i.e., fleet control, data fusion, and operator interface, allows monitoring the relevant variables in the simulated city. Š 2020, Springer-Verlag London Ltd., part of Springer Nature.This work is part of the âSwarmCity project: monitoring
future cities with intelligent flying swarms,â developed by the
Robotics and Cybernetics Research Group of the Centre for
Automation and Robotics (UPM-CSIC).Peer reviewe
- âŚ