256 research outputs found

    Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters

    Get PDF
    Research addressing the occurrence, fate and effects of pharmaceuticals in the aquatic environment has expanded rapidly over the past two decades, primarily due to the development of improved chemical analysis methods. Significant research gaps still remain, however, including a lack of longer term, repeated monitoring of rivers, determination of temporal and spatial changes in pharmaceutical concentrations, and inputs from sources other than wastewater treatment plants (WWTPs), such as combined sewer overflows (CSOs). In addressing these gaps it was found that the five pharmaceuticals studied were routinely (51-94 % of the time) present in effluents and receiving waters at concentrations ranging from single ng to ÎŒg L-1. Mean concentrations were in the tens to hundreds ng L-1 range and CSOs appear to be a significant source of pharmaceuticals to water courses in addition to WWTPs. Receiving water concentrations varied throughout the day although there were no pronounced peaks at particular times. Similarly, concentrations varied throughout the year although no consistent patterns were observed. No dissipation of the study compounds was found over a 5 km length of river despite no other known inputs to the river. In conclusion, pharmaceuticals are routinely present in semi-rural and urban rivers and require management alongside more traditional pollutants

    Fast photochemical oxidation of proteins coupled with mass spectrometry

    Get PDF
    Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques

    The CTP-binding domain is disengaged from the DNA-binding domain in a cocrystal structure of Bacillus subtilis Noc–DNA complex

    Get PDF
    In Bacillus subtilis, a ParB-like nucleoid occlusion protein (Noc) binds specifically to Noc-binding sites (NBSs) on the chromosome to help coordinate chromosome segregation and cell division. Noc does so by binding to CTP to form large membrane-associated nucleoprotein complexes to physically inhibit the assembly of the cell division machinery. The site-specific binding of Noc to NBS DNA is a prerequisite for CTP-binding and the subsequent formation of a membrane-active DNA-entrapped protein complex. Here, we solve the structure of a C-terminally truncated B. subtilis Noc bound to NBS DNA to reveal the conformation of Noc at this crucial step. Our structure reveals the disengagement between the N-terminal CTP-binding domain and the NBS-binding domain of each DNA-bound Noc subunit; this is driven, in part, by the swapping of helices 4 and 5 at the interface of the two domains. Site-specific crosslinking data suggest that this conformation of Noc-NBS exists in solution. Overall, our results lend support to the recent proposal that parS/NBS binding catalyzes CTP binding and DNA entrapment by preventing the reengagement of the CTP-binding domain and the DNA-binding domain from the same ParB/Noc subunit

    Structural Insights into the Recovery of Aldolase Activity in N -Acetylneuraminic Acid Lyase by Replacement of the Catalytically Active Lysine with Îł-Thialysine by Using a Chemical Mutagenesis Strategy

    Get PDF
    Chemical modification has been used to introduce the unnatural amino acid γ‐thialysine in place of the catalytically important Lys165 in the enzyme N‐acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site‐directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ‐thialysine through dehydroalanine (Dha) as demonstrated by ESI‐MS. Initial kinetic characterisation showed that the protein containing γ‐thialysine regained 17 % of the wild‐type activity. To understand the reason for this lower activity, we solved X‐ray crystal structures of the wild‐type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165‐γ‐thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ‐thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH‐activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine‐containing enzyme showed almost 30 % of the activity of the wild‐type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid‐containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pKa of the residue at position 165 is perturbed by replacement with γ‐thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL

    Metabolic control of BRISC–SHMT2 assembly regulates immune signalling

    Get PDF
    Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5â€Č-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC–SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer—and not the active PLP-bound tetramer—binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling

    Affinity purification of fibrinogen using an Affimer column

    Get PDF
    Background Fibrinogen is an abundant plasma protein with an essential role in blood coagulation and haemostasis thus receiving significant research interest. However, protein purification is time consuming and commercial preparations often have protein contaminants. The aim of this study was to develop a new method to purify high quality and functional fibrinogen. Methods Fibrinogen-specific Affimer protein, isolated using phage display systems, was immobilised to SulfoLink resin column and employed for fibrinogen purification from plasma samples. Fibrinogen was eluted using a high pH solution. Commercial human fibrinogen was also further purified using the Affimer column. Fibrinogen purity was determined by SDS-PAGE and mass spectrometry, while functionality was assessed using turbidimetric analysis. Results Affimer-purified fibrinogen from human plasma showed purity at least comparable to commercially available preparations and was able to form physiological fibrin networks. Further purification of commercially available fibrinogen using the Affimercolumn eliminated multiple contaminant proteins, a significant number of which are key elements of the coagulation cascade, including plasminogen and factor XIII. Conclusions The Affimercolumn represents a proof of concept novel, rapid method for isolating functional fibrinogen from plasma and for further purification of commercially available fibrinogen preparations. General significance Our methodology provides an efficient way of purifying functional fibrinogen with superior purity without the need of expensive pieces of equipment or the use of harsh conditions
    • 

    corecore