286 research outputs found

    Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    Get PDF
    Aims/hypothesis The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. Materials and methods NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Results Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. Conclusions/interpreation The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity

    Evaluating Metaphor Reification in Tangible Interfaces

    Get PDF
    International audienceMetaphors are a powerful conceptual device to reason about human actions. As such, they have been heavily used in designing and describing human computer interaction. Since they can address scripted text, verbal expression, imaging, sound, and gestures, they can also be considered in the design and analysis of multimodal interfaces. In this paper we discuss the description and evaluation of the relations between metaphors and their implementation in human computer interaction with a focus on tangible user interfaces (TUIs), a form of multimodal interface. The objective of this paper is to define how metaphors appear in a tangible context in order to support their evaluation. Relying on matching entities and operations between the domain of interaction and the domain of the digital application, we propose a conceptual framework based on three components: a structured representation of the mappings holding between the metaphor source, the metaphor target, the interface and the digital system; a conceptual model for describing metaphorical TUIs; three relevant properties, coherence, coverage and compliance, which define at what extent the implementation of a metaphorical tangible interface matches the metaphor. The conceptual framework is then validated and applied on a tangible prototype in an educational application
    corecore