3,026 research outputs found

    Overview of Neutron-Proton Pairing

    Full text link
    The role of neutron-proton pairing correlations on the structure of nuclei along the N=ZN=Z line is reviewed. Particular emphasis is placed on the competition between isovector (T=1T=1) and isoscalar (T=0(T=0) pair fields. The expected properties of these systems, in terms of pairing collective motion, are assessed by different theoretical frameworks including schematic models, realistic Shell Model and mean field approaches. The results are contrasted with experimental data with the goal of establishing clear signals for the existence of neutron-proton (npnp) condensates. We will show that there is clear evidence for an isovector npnp condensate as expected from isospin invariance. However, and contrary to early expectations, a condensate of deuteron-like pairs appears quite elusive and pairing collectivity in the T=0T=0 channel may only show in the form of a phonon. Arguments are presented for the use of direct reactions, adding or removing an npnp pair, as the most promising tool to provide a definite answer to this intriguing question.Comment: 89 pages, 59 figures. Accepted for publication in Progress in Particle and Nuclear Physics (ELSEVIER

    Partial-wave contributions to pairing in nuclei

    Full text link
    We present a detailed study of partial-wave contributions of nuclear forces to pairing in nuclei. For T=1, J=0 pairing, partial waves beyond the standard 1S0 channel play an interesting role for the pair formation in nuclei. The additional contributions are dominated by the repulsive 3P1 partial wave. Their effects, and generally spin-triplet nuclear forces between paired nucleons, are influenced by the interplay of spin-orbit partners. We explore the impact of including partial waves beyond the 1S0 channel on neutron-neutron pairing gaps in semi-magic isotopic chains. In addition, we show that nuclear forces favor T=1, J=0 over T=0, J=1 pairing, except in low-j orbitals. This is in contrast to the free-space motivation that suggests the formation of deuteron-like T=0 pairs in N=Z nuclei. The suppression of T=0 pairing is because the 3S1 strength is distributed on spin-orbit partners and because of the effects of the repulsive 1P1 channel and of D waves.Comment: 10 pages, 16 figure

    Quantum motion of a spinless particle in curved space: A viewpoint of scattering theory

    Full text link
    In this work, we study the scattering of a spinless charged particle constrained to move on a curved surface in the presence of the Aharonov-Bohm potential. We begin with the equations of motion for the surface and transverse dynamics previously obtained in the literature (Ferrari G. and Cuoghi G., Phys. Rev. Lett. \textbf{100}, 230403 (2008)) and describe the surface with non-trivial curvature in terms of linear defects such as dislocations and disclinations. Expressions for the modified phase shift, S--matrix and scattering amplitude are determined by applying a suitable boundary condition at the origin, which comes from the self-adjoint extension theory. We also discuss the presence of a bound state obtained from the pole of the S--matrix. Finally, we claim that the bound state, the additional scattering and the dependence of the scattering amplitude with energy are solely due to the curvature effects.Comment: 9 pages, 1 figur

    Photon emission as a source of coherent behaviour of polaritons

    Full text link
    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest energy photon mode of a microcavity) are presented in support to this statement

    Mach-Zehnder Interferometry at the Heisenberg Limit with coherent and squeezed-vacuum light

    Full text link
    We show that the phase sensitivity Δθ\Delta \theta of a Mach-Zehnder interferometer fed by a coherent state in one input port and squeezed-vacuum in the other one is i) independent from the true value of the phase shift and ii) can reach the Heisenberg limit Δθ1/NT\Delta \theta \sim 1/N_T, where NTN_T is the average number of particles of the input states. We also show that the Cramer-Rao lower bound, Δθ1/α2e2r+sinh2r\Delta \theta \propto 1/ \sqrt{|\alpha|^2 e^{2r} + \sinh^2r}, can be saturated for arbitrary values of the squeezing parameter rr and the amplitude of the coherent mode α|\alpha| by a Bayesian phase inference protocol.Comment: 4 pages, 4 figure

    Loss of correlation between HIV viral load and CD4+ T-cell counts in HIV/HTLV-1 co-infection in treatment naive Mozambican patients

    Get PDF
    Seven hundred and four HIV-1/2-positive, antiretroviral therapy (ART) naïve patients were screened for HTLV-1 infection. Antibodies to HTLV-1 were found in 32/704 (4.5%) of the patients. Each co-infected individual was matched with two HIV mono-infected patients according to World Health Organization clinical stage, age +/-5 years and gender. Key clinical and laboratory characteristics were compared between the two groups. Mono-infected and co-infected patients displayed similar clinical characteristics. However, co-infected patients had higher absolute CD4+ T-cell counts (P = 0.001), higher percentage CD4+ T-cell counts (P < 0.001) and higher CD4/CD8 ratios (P < 0.001). Although HIV plasma RNA viral loads were inversely correlated with CD4+ T-cell-counts in mono-infected patients (P < 0.0001), a correlation was not found in co-infected individuals (P = 0.11). Patients with untreated HIV and HTLV-1 co-infection show a dissociation between immunological and HIV virological markers. Current recommendations for initiating ART and chemoprophylaxis against opportunistic infections in resource-poor settings rely on more readily available CD4+ T-cell counts without viral load parameters. These guidelines are not appropriate for co-infected individuals in whom high CD4+ T-cell counts persist despite high HIV viral load states. Thus, for co-infected patients, even in resource-poor settings, HIV viral loads are likely to contribute information crucial for the appropriate timing of ART introduction

    Polariton Lasing in a Multilevel Quantum Dot Strongly Coupled To a Single Photon Mode

    Full text link
    We present an approximate analytic expression for the photoluminescence spectral function of a model polariton system, which describes a quantum dot, with a finite number of fermionic levels, strongly interacting with the lowest photon mode of a pillar microcavity. Energy eigenvalues and wavefunctions of the electron-hole-photon system are obtained by numerically diagonalizing the Hamiltonian. Pumping and photon losses through the cavity mirrors are described with a master equation, which is solved in order to determine the stationary density matrix. The photon first-order correlation function, from which the spectral function is found, is computed with the help of the Quantum Regression Theorem. The spectral function qualitatively describes the polariton lasing regime in the model, corresponding to pumping rates two orders of magnitude lower than those needed for ordinary (photon) lasing. The second-order coherence functions for the photon and the electron-hole subsystems are computed as functions of the pumping rate.Comment: version accepted in Phys. Rev.

    Beyond the Landau Criterion for Superfluidity

    Full text link
    According to the Landau criterion for superfluidity, a Bose-Einstein condensate flowing with a group velocity smaller than the sound velocity is energetically stable to the presence of perturbing potentials. We found that this is strictly correct only for vanishingly small perturbations. The superfluid critical velocity strongly depends on the strength and shape of the defect. We quantitatively study, both numerically and with an approximate analytical model, the dynamical response of a one-dimensional condensate flowing against an istantaneously raised spatially periodic defect. We found that the critical velocity vcv_c decreases by incresing the strength of the defect V0V_0, up to to a critical value of the defect intensity where the critical velocity vanishes

    Materiais de isolamento térmico de edifícios. Para além da energia operacional

    Get PDF
    The use of thermal insulation materials for the achievement of energy efficient buildings intended, in most cases, the fulfilment of the required heating and cooling needs of the operational phase. The main goal of this paper is â by using exploratory methodology, namely literature review â identify more sustainable insulating materials and, concomitantly, exposing the paradoxical effect of other insulation materials with high Global Warming Potential (GWP) highlighting the role of the Life Cycle Assessment (LCA), Ecodesign and Environmental Product Declaration (EPD) tools for the framing, comparison and selection of materials. As a main conclusion, it is noticed the lack of environmental information from the producers which, together with acquisition prices that do not internalize Life Cycle Costs (LCC), has led to the use of insulation materials with high carbon footprint and to the "isolation paradox" as well.A utilização de materiais de isolamento térmico para a obtenção de edifícios energeticamente eficientes visa, na generalidade dos casos, a satisfação das respetivas necessidades de aquecimento e arrefecimento da fase operacional. O objetivo principal deste trabalho é o de - mediante a utilização de metodologia exploratória, nomeadamente revisão bibliográfica - identificar materiais de isolamento mais sustentáveis e, concomitantemente, expor o efeito paradoxal de outros com elevado Potencial de Aquecimento Global (GWP), destacando o papel da Avaliação de Ciclo de Vida (ACV), do Ecodesign e da Declaração Ambiental de Produto (DAP) para a conceção, comparação e seleção de materiais. Como principal conclusão, salienta-se a ausência generalizada de informação ambiental por parte dos produtores o que, a par de preços de aquisição que não internalizam Custos de Ciclo de Vida (LCC), tem conduzido à utilização de materiais com elevada pegada de carbono e ao “paradoxo do isolamento”

    Discrete and continuous SIS epidemic models: A unifying approach

    Get PDF
    550030/2010-7.The susceptible-infective-susceptible (SIS) epidemiological scheme is the simplest description of the dynamics of a disease that is contact-transmitted, and that does not lead to immunity. Two by now classical approaches to such a description are: (i) the use of a mass-action compartmental model that leads to a single ordinary differential equation (SIS-ODE); (ii) the use of a discrete-time Markov chain model (SIS-DTMC). While the former can be seen as a mean-field approximation of the latter under certain conditions, it is also known that their dynamics can be significantly different, if the basic reproduction number is greater than one. The goal of this work is to introduce a continuous model, based on a partial differential equation (SIS-PDE), that retains the finite populations effects present in the SIS-DTMC model, and that allows the use of analytical techniques for its study. In particular, it will reduce itself to the SIS-ODE model in many circumstances. This is accomplished by deriving a diffusion-drift approximation to the probability density of the SIS-DTMC model. Such a diffusion is degenerated at the origin, and must conserve probability. These two features then lead to an interesting consequence: the biologically correct solution is a measure solution. We then provide a convenient representation of such a measure solution that allows the use of classical techniques for its computation, and that also provides a tool for obtaining information about several dynamical features of the model. In particular, we show that the SIS-ODE gives the most likely state, conditional on non-absorption. As a further application of such representation, we show how to define the disease-outbreak probability in terms of the SIS-PDE model, and show that this definition can be used both for certain and uncertain initial presence of infected individuals. As a final application, we compute an approximation for the extinction time of the disease. In addition, we present many numerical examples that confirm the good approximation of the SIS-DTMC by the SIS-PDE.preprintpublishe
    corecore