3,717 research outputs found

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    Electric vehicle battery model identification and state of charge estimation in real world driving cycles

    Get PDF
    This paper describes a study demonstrating a new method of state-of-charge (SoC) estimation for batteries in real-world electric vehicle applications. This method combines realtime model identification with an adaptive neuro-fuzzy inference system (ANFIS). In the study, investigations were carried down on a small-scale battery pack. An equivalent circuit network model of the pack was developed and validated using pulse-discharge experiments. The pack was then subjected to demands representing realistic WLTP and UDDS driving cycles obtained from a model of a representative electric vehicle, scaled match the size of the battery pack. A fast system identification technique was then used to estimate battery parameter values. One of these, open circuit voltage, was selected as suitable for SoC estimation, and this was used as the input to an ANFIS system which estimated the SoC. The results were verified by comparison to a theoretical Coulomb-counting method, and the new method was judged to be effective. The case study used a small 7.2 V NiMH battery pack, but the method described is applicable to packs of any size or chemistry

    Electric vehicle battery parameter identification and SOC observability analysis: NiMH and Li-S case studies

    Get PDF
    In this study, a framework is proposed for battery model identification to be applied in electric vehicle energy storage systems. The main advantage of the proposed approach is having capability to handle different battery chemistries. Two case studies are investigated: nickel-metal hydride (NiMH), which is a mature battery technology, and Lithium-Sulphur (Li-S), a promising next-generation technology. Equivalent circuit battery model parametrisation is performed in both cases using the Prediction-Error Minimization (PEM) algorithm applied to experimental data. The use of identified parameters for battery state-of-charge (SOC) estimation is then discussed. It is demonstrated that the set of parameters needed can change with a different battery chemistry. In the case of NiMH, the battery’s open circuit voltage (OCV) is adequate for SOC estimation. However, Li-S battery SOC estimation can be challenging due to the chemistry’s unique features and the SOC cannot be estimated from the OCV-SOC curve alone because of its flat gradient. An observability analysis demonstrates that Li-S battery SOC is not observable using the common state-space representations in the literature. Finally, the problem’s solution is discussed using the proposed framework

    A study on battery model parametrisation problem: application-oriented trade-offs between accuracy and simplicity

    Get PDF
    This study is focused on fast low-fidelity battery modelling for online applications. Because the battery parameters change due to variations of battery’s states, the model may need to be updated during operation. This can be achieved through the use of an online parameter identification technique, making use of online current-voltage measurements. The parametrisation algorithm’s speed is a crucial issue in such applications. This paper describes a study exploring the trade-offs between speed and accuracy, considering equivalent circuit models with different levels of complexity and different parameter-fitting algorithms. A visual investigation of the battery parametrisation problem is also proposed by obtaining battery model identification surfaces which help us to avoid unnecessary complexities. Three standard fitting algorithms are used to parametrise battery models using current-voltage measurements. For each level of complexity, the algorithms performances are evaluated using experimental data from a small NiMH battery pack. An application-oriented view on this trade-offs is discussed which demonstrates that the final target of the battery parametrisation problem can significantly affect the choice of the fitting algorithm and battery model structur

    Recommendation Subgraphs for Web Discovery

    Full text link
    Recommendations are central to the utility of many websites including YouTube, Quora as well as popular e-commerce stores. Such sites typically contain a set of recommendations on every product page that enables visitors to easily navigate the website. Choosing an appropriate set of recommendations at each page is one of the key features of backend engines that have been deployed at several e-commerce sites. Specifically at BloomReach, an engine consisting of several independent components analyzes and optimizes its clients' websites. This paper focuses on the structure optimizer component which improves the website navigation experience that enables the discovery of novel content. We begin by formalizing the concept of recommendations used for discovery. We formulate this as a natural graph optimization problem which in its simplest case, reduces to a bipartite matching problem. In practice, solving these matching problems requires superlinear time and is not scalable. Also, implementing simple algorithms is critical in practice because they are significantly easier to maintain in production. This motivated us to analyze three methods for solving the problem in increasing order of sophistication: a sampling algorithm, a greedy algorithm and a more involved partitioning based algorithm. We first theoretically analyze the performance of these three methods on random graph models characterizing when each method will yield a solution of sufficient quality and the parameter ranges when more sophistication is needed. We complement this by providing an empirical analysis of these algorithms on simulated and real-world production data. Our results confirm that it is not always necessary to implement complicated algorithms in the real-world and that very good practical results can be obtained by using heuristics that are backed by the confidence of concrete theoretical guarantees

    A Three-Point Cosmic Ray Anisotropy Method

    Full text link
    The two-point angular correlation function is a traditional method used to search for deviations from expectations of isotropy. In this paper we develop and explore a statistically descriptive three-point method with the intended application being the search for deviations from isotropy in the highest energy cosmic rays. We compare the sensitivity of a two-point method and a "shape-strength" method for a variety of Monte-Carlo simulated anisotropic signals. Studies are done with anisotropic source signals diluted by an isotropic background. Type I and II errors for rejecting the hypothesis of isotropic cosmic ray arrival directions are evaluated for four different event sample sizes: 27, 40, 60 and 80 events, consistent with near term data expectations from the Pierre Auger Observatory. In all cases the ability to reject the isotropic hypothesis improves with event size and with the fraction of anisotropic signal. While ~40 event data sets should be sufficient for reliable identification of anisotropy in cases of rather extreme (highly anisotropic) data, much larger data sets are suggested for reliable identification of more subtle anisotropies. The shape-strength method consistently performs better than the two point method and can be easily adapted to an arbitrary experimental exposure on the celestial sphere.Comment: Fixed PDF erro

    Fuzzy logic control for energy saving in autonomous electric vehicles

    Get PDF
    Limited battery capacity and excessive battery dimensions have been two major limiting factors in the rapid advancement of electric vehicles. An alternative to increasing battery capacities is to use better: intelligent control techniques which save energy on-board while preserving the performance that will extend the range with the same or even smaller battery capacity and dimensions. In this paper, we present a Type-2 Fuzzy Logic Controller (Type-2 FLC) as the speed controller, acting as the Driver Model Controller (DMC) in Autonomous Electric Vehicles (AEV). The DMC is implemented using realtime control hardware and tested on a scaled down version of a back to back connected brushless DC motor setup where the actual vehicle dynamics are modelled with a Hardware-In-the-Loop (HIL) system. Using the minimization of the Integral Absolute Error (IAE) has been the control design criteria and the performance is compared against Type-1 Fuzzy Logic and Proportional Integral Derivative DMCs. Particle swarm optimization is used in the control design. Comparisons on energy consumption and maximum power demand have been carried out using HIL system for NEDC and ARTEMIS drive cycles. Experimental results show that Type-2 FLC saves energy by a substantial amount while simultaneously achieving the best IAE of the control strategies tested

    Alien Registration- Auger, Emile J. (Auburn, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/30754/thumbnail.jp
    • …
    corecore