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Abstract 

In this study, a framework is proposed for battery model 

identification to be applied in electric vehicle energy storage 

systems. The main advantage of the proposed approach is 

having capability to handle different battery chemistries. Two 

case studies are investigated: nickel-metal hydride (NiMH), 

which is a mature battery technology, and Lithium-Sulphur 

(Li-S), a promising next-generation technology. Equivalent 

circuit battery model parametrisation is performed in both 

cases using the Prediction-Error Minimization (PEM) 

algorithm applied to experimental data. The use of identified 

parameters for battery state-of-charge (SOC) estimation is 

then discussed. It is demonstrated that the set of parameters 

needed can change with a different battery chemistry. In the 

case of NiMH, the battery’s open circuit voltage (OCV) is 

adequate for SOC estimation. However, Li-S battery SOC 

estimation can be challenging due to the chemistry’s unique 

features and the SOC cannot be estimated from the OCV-

SOC curve alone because of its flat gradient. An observability 

analysis demonstrates that Li-S battery SOC is not observable 

using the common state-space representations in the literature. 

Finally, the problem’s solution is discussed using the 

proposed framework. 

1 Introduction 

Road vehicles are becoming increasingly electrified. One of 

the most significant issues of the development of electric 

vehicles (EVs) is energy storage technology. Batteries, as the 

most common type of energy storage systems, may have 

different electrochemical features depending on their exact 

chemistry, and they may need to be managed in different 

ways. In the literature, many battery chemistries have been 

investigated and used for automotive applications: lead-acid, 

nickel-metal hydride (NiMH), and lithium-ion (Li-ion) are 

just a few examples. There is much research on improved 

battery technologies with many aims such as increasing 

battery capacity, lower cost and greater safety. Among these 

new battery technologies, lithium-sulphur (Li-S) is a 

promising technology, with a suggested specific energy up to 

650 Wh/kg. This offers the potential for increased energy 

storage capacity without an increase in weight, and in 

applications where weight rather than space is the limiting 

factor, this offers a potential way to increase an EV’s range. 

Good explanations of the electrochemical reactions taking 

place inside a Li-S battery can be found in the literature [1]-

[3] and are not duplicated here: assuming that when in 

production, mature Li-S technologies will also provide a 

sufficient power output and lifetime in the future, its ability to 

operate in a wide temperature range of operation and its 

distinct safety advantages make it very attractive for 

automotive applications. Li-S technology has developed 

dramatically, though it has not yet been deployed in a full-

scale EV to date.  As part of efforts to bring it to market,  

Innovate UK has co-funded a research project called 

‘Revolutionary Electric Vehicle Battery’ (REVB) to 

embedding model-based methods in the cell development 

process: the collaborators in this project – OXIS Energy, 

Imperial College London, Cranfield University and Ricardo, 

aim to demonstrate advanced Li-S vehicle battery technology 

with 400 Wh/kg cell-level energy density. Part of this project 

involves the development of battery management algorithms 

to get the most out of Li-S and manage its state effectively. 

This study, as a part the REVB project, addresses battery 

model identification for state-of-charge (SOC) estimation in 

EV energy storage applications. Two case studies are 

investigated here: NiMH and Li-S. The NiMH battery 

chemistry is selected as it is a mature battery technology 

which has been the subject of many previous studies.  It is 

also ‘safe’, and therefore suitable for an experimental 

laboratory environment.  As might be expected from the 

REVB project context, the second chemistry is Li-S. For 

application in EVs, an ‘equivalent circuit’ modelling 

approach is chosen which is fast enough for real-time 

applications. Experimental tests are carried out in order to 

parametrise the battery models under different working 

conditions. The battery measurement consists of current (the 

controlled input) and terminal voltage (measured as an 

output), all in the time domain. The measurement data is used 

to identify battery parameters. Figure 1 demonstrates the 

whole structure of the proposed framework in this study, 

including the battery measurements, parameter identification 

and SOC estimation parts. The measurements of current and 

voltage are used by the identification part to extract battery 

parameters in real-time. The outputs of the identification part 

(estimates of unknown parameters) are then used by the 

estimation unit which uses an artificial intelligent technique 

(described later in the paper) and is trained to find the 

relationship between the battery parameters and SOC. The 

effects of temperature are taken into account in this part of the 

framework, where SOC estimation is performed by a set of 

estimators which have been trained at different temperatures. 

Number and type of the outputs of the identification part is 

not pre-determined: the number of parameters is chosen based 
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on what is required for effective state estimation. The number 

of identified parameters used can change with regard to the 

battery chemistry, and an investigation of this is a particular 

contribution of this study. 

 

Figure 1: Battery parameter identification for SOC estimation 

2 Battery model identification 

2.1 Equivalent circuit battery model 

Electrical circuit modelling or equivalent circuit network 

(ECN) modelling is a common method for simulating battery 

performance. Having less complexity than high-fidelity 

electrochemical models, ECN models have been used in a 

wide range of applications and for various battery types [4]-

[7]. ECN battery models are constructed by putting resistors, 

capacitors and voltage sources in a circuit. Schematic of an 

equivalent circuit battery model, called a ‘Thevenin’ model 

[8][9] or one RC network model (1RC model), is illustrated in 

Figure 2. In this structure, 
tV  is battery’s terminal voltage, 

OCV  is open circuit voltage (OCV), 
OR  is internal resistance, 

PR  and 
PC  are equivalent polarization resistance and 

capacitance respectively. In this study, 1RC model is used as 

the battery model structure. The dynamic equations of such a 

model are as follows: 

1 1

t OC O L P

P
P L

P P P

V V R I V

dV
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dt R C C
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


  


                      (1) 

 

Figure 2: Thevenin battery model (1RC model) 

2.2 Battery experiments 

The batteries studied here are a six-cell NiMH battery pack, 

and a single Li-S cell developed by Oxis Energy Ltd [10]. 

Technical specifications of both batteries are presented in 

Table 1. The test bench which is used for NiMH battery 

experiments is explained in [11] with details. For Li-S cell 

experiments, the Maccor Series-4000 battery tester is used. 

The battery tester is a voltage/current device that applies a 

current and measures the voltage or Vis versa. The current 

and voltage limits are +/- 5A and +/- 5V for each channel. 

The cell is contained inside an aluminium test box which is 

connected to the equipment using crocodile clips. The test 

box is contained inside a Binder thermal chamber to set the 

desired temperature during each test. Li-S cell test equipment 

is depicted in Figure 3. 

In both case studies (NiMH and Li-S), experiments are 

conducted by applying consecutive discharge current pulses 

to the battery and measuring terminal voltage as the output. 

Each test starts from fully charged state and continues until 

the terminal voltage drops below the cut-off voltage that 

means depleted charge state. In Figure 4, battery 

measurements including current (input) and terminal voltage 

(output), which are recorded at 25°C, are shown for two tests 

on NiMH and Li-S. 

 

Figure 3: Li-S cell test equipment 

 

Figure 4: Battery measurements; (a) NiMH, (b) Li-S 
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Table 1: NiMH battery pack and Li-S cell specifications 

Battery 

chemistry 
NiMH Li-S 

Rated capacity 2400 mAh 3400 mAh 

No. of cells 6 1 

Rated voltage 7.2 V 2.1 V 

Full-Charged 

voltage 
8.5 V 2.4 V 

Cut-off voltage 6 V 1.5 V 

Schematic 
  

2.3 Identification algorithm 

In the proposed approach, a system identification technique is 

utilized to find the battery parameters based on input-output 

battery measurements which are current and terminal voltage. 

Prediction-Error Minimization (PEM) algorithm is utilized for 

battery model identification.  

In the identification procedure, the model’s parameter vector 

θ is determined so that the prediction error ( , )kt   is 

minimized.  The error is defined as follows:  

1
ˆ( , ) ( ) ( ; )k k k kt y t y t t                        (2) 

where ( )ky t  is the measured output at time k and 
1

ˆ( ; )k ky t t 
 

is predicted value of the output at time k using the parameters 

θ. The prediction error depends on the parameter vector, so an 

iterative minimization procedure has to be applied. 

Consequently a scalar fitness function is minimized as 

follows: 

1

1
( ) det ( , ) ( , )

N
T

N k k

k

E t t
N

    


 
  

 
                (3) 

For the model shown in figure 2, the parameters vector has 

four elements as follows.  The parameters are optimized so 

that the least difference between measured terminal voltage 

and model’s output is achieved. 

1 1[ , , , ]O OCR V R C                            (4) 

1
ˆ( , ) ( ) ( ; )k t k t k kt V t V t t                    (5) 

Both NiMH and Li-S models are identified using PEM 

algorithm based on the experimental data presented in the 

previous section. 

2.4 Identification results 

The four parameters of 1RC model are obtained for both 

NiMH and Li-S cases using PEM algorithm as presented in 

Figure 5 and Figure 6 respectively. The identification process 

is repeated over the whole range of SOC at regular intervals 

called “identification window” or “identification horizon”. 

The battery identification window can be a time window or 

SOC window. However, a combination of both is designed 

and used in this study because of the electric vehicle (EV) 

application. Since the power demand from an EV’s battery 

pack can change in a wide range, identifying the battery 

model at regular time intervals is not effective.  On the other 

hand, EV battery’s SOC can change in few seconds when the 

power demand is very high. This may cause numerical 

problems for the identification process when the number of 

data points is not enough to identify the parameters. Here, the 

identification process is repeated every 1% change in SOC. 

So, the battery model is identified using the measurement’s 

history in the past 1% SOC. However, the identification 

window’s length is extended to the past 2 minutes when it is 

less than that. 

Figure 5 demonstrates that the OCV-SOC curve of NiMH 

battery is a very smooth curve with always positive gradient 

which makes it suitable for SOC estimation. The ohmic 

resistance is sensitive to SOC variation just at low and very 

high SOC levels however this sensitivity is less in the middle. 

The NiMH battery polarisation resistance is almost flat in a 

wide range of SOC between 20% and 80% which means it is 

not suitable for SOC estimation at all. Finally, the polarisation 

capacitance is not identified reliably and the fluctuation 

makes it unsuitable to be used for SOC estimation. On the 

other hand, Figure 6 demonstrates completely different results 

for the Li-S cell. The main difference is the OCV-SOC curve 

which is flat for Li-S battery in a wide range. So, against the 

NiMH battery, we really need to investigate other parameters 

in this case. In the next part, an observability analysis is 

performed to show the difference between the two battery 

types using a mathematical representation.  

3 Battery SOC estimation 

In this section, battery state-of-charge (SOC) estimation is 

studied for the two case studies, NiMH and Li-S. For this 

purpose, an observability analysis is performed firstly in both 

cases. Then the connection between the identification and 

estimation parts is discussed using the proposed framework 

depicted in Figure 1.  

3.1 Observability analysis 

Referring to the battery differential equations in Eq.(1), an 

observability analysis would be possible if a state-space 

representation of the model is available in the standard form 

in below: 

x A x Bu

y C x Du

 


 

                               (6) 

where x is the state vector, u is the input (i.e. current), y is the 

output (i.e. terminal voltage) and A, B, C and D are matrices 

that include battery model’s parameters. Since the above 

state-space representation is obtained for linear systems, we 

need to linearize the nonlinear battery model. For this 

purpose, a method which is presented in [12] is used here. In 

this method, 
PV  and SOC are model states, current is the 

input and terminal voltage is the output. For 
PV , it is easy to 

write it in the standard state-space format however, there is 

more to do for SOC. Using Coulomb-Counting (CC), SOC is 

calculated by integrating the load current to know how much 

capacity is used and remained. Assuming 
0SOC  as the initial 
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SOC at time 
0t , the battery’s SOC at time t  is defined as 

follows:  

 

0

0

( )
, 0 1

t

tt

i
SOC SOC d SOC

C

 


 
    

 
 
       (7) 

where ( )i t  is the current in ampere (A) and is assumed 

positive for discharging and negative for charging. Parameter 

  is the battery Coulombic efficiency and tC  is cell’s total 

capacity in ampere-second (A.s) when the time is in second. 

Therefore, SOC is a number between 0 and 1 representing 

depleted and fully-charged states respectively.  

 
Figure 5: Identified parameters of the NiMH model 

 
Figure 6: Identified parameters of the Li-S model 

 

There is still one term in the output equation that is not match 

with the standard form of state-space. OCV (
OCV ) can be 

obtained as a nonlinear function of SOC based on the 

identification results. Such a nonlinear function can be 

divided into small linear parts using the gain scheduling 

method developed in [13]. Considering 
SOC  as the SOC 

interval length, battery OCV can be written for the ith SOC 

interval as follows: 

 
.

( 1). .

OC i i i

SOC i SOC

V a SOC b

where i SOC i

 

    
        (8) 

The coefficients a and b are obtained from OCV-SOC curve 

and are constant at each small segment as illustrated in Figure 
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7. So, OCV can be replaced by its linearized approximation in 

the output equation as follows: 

.t i i O L PV a SOC b R I V                           (9) 

Consequently, the state-space representation of the battery 

model is obtained as follows: 

 

 

1
1

0

0 0

1

P

PP

P P L

t

P

t i i O L

dV

CVdt
R C I
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Cdt
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  
     
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       (10) 

Having the model in state-space form, observability of the 

model can be analysed by calculating the observability matrix 

as follows [14]: 

1

1
0

i

P P

a
C

O
CA

R C

 
       
 

  

                         (11) 

Since 
PR and 

PC are positive non-zero numbers in the battery 

models, the only case in which the observability matrix is not 

full rank is when 
ia  be zero. This will never happen for the 

NiMH model because of the OCV-SOC characteristics for 

this battery type. However, the results demonstrate that the 

system is not fully observable for the case of Li-S because of 

the particular features of Li-S battery OCV curve. Indeed, the 

coefficient 
ia  can be zero for a Li-S battery. The whole range 

of SOC of a Li-S battery can be divided into two parts called 

high plateau (HP) and low plateau (LP). SOC cannot be 

estimated using OCV curve in LP because of its flat shape as 

depicted in Figure 7.  

 
Figure 7: Piecewise linear approximation of OCV-SOC 

curves (a) NiMH, (b) Li-S 

3.2 Battery SOC estimation using system identification 

There are various battery SOC estimation methods in the 

literature which are applied for Lead-acid, NiMH and Li-ion 

batteries. As an example, Lithium-ion battery SOC is 

estimated using a proportional-integral observer in [12]. Our 

results in the previous section demonstrate that these common 

methods are not applicable for Li-S battery because of its 

unique features. In this study, a generic framework is 

proposed to be able to handle different battery types. In the 

proposed approach, a system identification tool is connected 

to an estimation tool to build an integrated system as 

demonstrated in Figure 1. As mentioned in the introduction 

section, an important question about the proposed framework 

is: which parameters are really needed to be identified for 

SOC estimation?  

To find the answer of this question, battery OCV is 

investigated firstly as the most widely used battery parameter 

for SOC estimation. After investigating the two case studies 

(i.e. NiMH and Li-S) the results demonstrate that NiMH 

battery SOC is predictable by only using OCV [15]. In this 

case there is no need to use more battery parameters which 

just increase the computational effort with no gain. However, 

the situation is different for Li-S battery where OCV is not 

enough for SOC estimation. Consequently, other battery 

parameters should be used by the estimator in this case. The 

estimator can be in different forms. For example in [15], an 

adaptive neuro-fuzzy inference system (ANFIS) is designed 

and used for SOC estimation using the identification results 

for the NiMH battery pack. Other types of estimators can be 

used instead of ANFIS as well. The idea is to find the 

relationship between the identification results and SOC by 

using a mapping function like f  in bellow: 

1 2 3( , , , )SOC f P P P                         (12) 

where 
iP  is the ith identified battery parameter. As a 

designer, we are interested to use the minimum number of 

parameters in order to decrease computational effort 

especially for online applications.  

The results demonstrate that design of a SOC estimator for 

Li-S battery can be challenging. The first conclusion is that 

OCV is not enough in this case however; it can be one of the 

choices beside other parameters. Figure 8 demonstrates that 

OCV can be used for SOC estimation in a specific range of 

SOC between 80% and 100% (i.e. HP). In other words, we 

are sure about the SOC value when OCV is more than 2.12V. 

Out of this range, the other parameters shall be used instead. 

For example, Li-S SOC can be determined if the ohmic 

resistance is more than 0.1 ohm. This can happen only when 

SOC is less than 15% as illustrated in Figure 8. Referring to 

Figure 6, the polarisation resistance and capacitance can be 

utilised for SOC as well. So, a combination of Li-S battery 

parameters should be used by an estimator to get the best 

results. Designing such an estimator and test it under different 

conditions, like the procedure presented in [15], needs to be 

done in a separate study. However, the results of this study 

can be used as a base for that target. The temperature effect 

should be also added by training different estimators to be 

used at different temperature levels. 
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Figure 8: Li-S SOC observability using different parameters 

4 Conclusions 

In this study, Li-S real-time cell parametrisation is performed 

for a Thevenin equivalent circuit model using the PEM 

algorithm applied to experimental data, which is a new 

contribution in this area. A framework is also proposed in 

which a system identification tool is connected to an 

estimation tool as a unique integrated system. The connection 

between the two parts is a parameter set consisting of those 

parameters found to give the most effective SOC estimation. 

The results demonstrate that not all battery parameters are 

required to get effective SOC estimation, and some are best 

discarded. The results also demonstrate that the set of 

effective parameters can change with respect to the battery 

chemistry. This was shown by the investigation of two 

different battery chemistries, NiMH and Li-S. It is concluded 

that the OCV is adequate for NiMH battery SOC estimation. 

However, the problem is more challenging for Li-S battery 

because of its unique characteristics, particularly its flat 

OCV-SOC curve. An observability analysis demonstrates that 

unlike other battery types in the literature, the Li-S battery 

model’s SOC is not observable from measurements of current 

and voltage alone. Consequently, existing SOC estimation 

techniques will not be applicable for Li-S or at least will need 

major modifications for this goal. This is an open research 

area, if it can be addressed; it increases the likelihood of 

realising the promise of Li-S as a next-generation battery 

technology. 
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