25 research outputs found

    Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from migratory birds in Southern Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Borrelia burgdorferi </it>sensu lato (s.l.) are the causative agent for Lyme borreliosis (LB), the most common tick-borne disease in the northern hemisphere. Birds are considered important in the global dispersal of ticks and tick-borne pathogens through their migration. The present study is the first description of <it>B. burgdorferi </it>prevalence and genotypes in <it>Ixodes ricinus </it>ticks feeding on birds during spring and autumn migration in Norway.</p> <p>Methods</p> <p>6538 migratory birds were captured and examined for ticks at Lista Bird Observatory during the spring and the autumn migration in 2008. 822 immature <it>I. ricinus </it>ticks were collected from 215 infested birds. Ticks were investigated for infection with <it>B. burgdorferi </it>s.l. by real-time PCR amplification of the 16S rRNA gene, and <it>B. burgdorferi </it>s.l. were thereafter genotyped by melting curve analysis after real-time PCR amplification of the <it>hbb </it>gene, or by direct sequencing of the PCR amplicon generated from the <it>rrs </it>(16S)-<it>rrl </it>(23S) intergenetic spacer.</p> <p>Results</p> <p><it>B. burgdorferi </it>s.l. were detected in 4.4% of the ticks. The most prevalent <it>B. burgdorferi </it>genospecies identified were <it>B. garinii </it>(77.8%), followed by <it>B.valaisiana </it>(11.1%), <it>B. afzelii </it>(8.3%) and <it>B. burgdorferi </it>sensu stricto (2.8%).</p> <p>Conclusion</p> <p>Infection rate in ticks and genospecies composition were similar in spring and autumn migration, however, the prevalence of ticks on birds was higher during spring migration. The study supports the notion that birds are important in the dispersal of ticks, and that they may be partly responsible for the heterogeneous distribution of <it>B. burgdorferi </it>s.l. in Europe.</p

    Estimating number of European eel (Anguilla anguilla) individuals using environmental DNA and haplotype count in small rivers

    No full text
    Abstract Knowledge about population genetic data is important for effective conservation management. Genetic research traditionally requires sampling directly from the organism, for example tissue, which can be challenging, time‐consuming, and harmful to the animal. Environmental DNA (eDNA) approaches offer a way to sample genetic material noninvasively. In attempts to estimate population size of aquatic species using eDNA, researchers have found positive correlations between biomass and eDNA concentrations, but the approach is debated because of variations in the production and degrading of DNA in water. Recently, a more accurate eDNA‐approach has emerged, focusing on the genomic differences between individuals. In this study, we used eDNA from water samples to estimate the number of European eel (Anguilla anguilla) individuals by examining haplotypes in the mitochondrial D‐loop region, both in a closed aquatic environment with 10 eels of known haplotypes and in three rivers. The results revealed that it was possible to find every eel haplotype in the eDNA sample collected from the closed environment. We also found 13 unique haplotypes in the eDNA samples from the three rivers, which probably represent 13 eel individuals. This means that it is possible to obtain genomic information from European eel eDNA in water; however, more research is needed to develop the approach into a possible future tool for population quantification
    corecore