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Background: Tick-borne diseases have become 
increasingly common in recent decades and present a 
health problem in many parts of Europe. Control and 
prevention of these diseases require a better under-
standing of vector distribution. Aim: Our aim was to 
create a model able to predict the distribution of Ixodes 
ricinus nymphs in southern Scandinavia and to assess 
how this relates to risk of human exposure. Methods: 
We measured the presence of  I. ricinus  tick nymphs 
at 159 stratified random lowland forest and meadow 
sites in Denmark, Norway and Sweden by dragging 
400 m transects from August to September 2016, 
representing a total distance of 63.6 km. Using climate 
and remote sensing environmental data and boosted 
regression tree modelling, we predicted the overall 
spatial distribution of I. ricinus nymphs in Scandinavia. 
To assess the potential public health impact, we com-
bined the predicted tick distribution with human den-
sity maps to determine the proportion of people at 
risk. Results: Our model predicted the spatial distribu-
tion of I. ricinus nymphs with a sensitivity of 91% and 
a specificity of 60%. Temperature was one of the main 
drivers in the model followed by vegetation cover. 
Nymphs were restricted to only 17.5% of the modelled 
area but, respectively, 73.5%, 67.1% and 78.8% of the 
human populations lived within 5 km of these areas 
in Denmark, Norway and Sweden. Conclusion: The 
model suggests that increasing temperatures in the 
future may expand tick distribution geographically in 

northern Europe, but this may only affect a small addi-
tional proportion of the human population.

Introduction
Ticks are one of the most important vectors for path-
ogens, impacting a wide range of vertebrates, and 
transmit more pathogens than any other arthropod 
[1,2]. In Europe, the main vector for tick-borne patho-
gens is  Ixodes ricinus  [3,4], which is also the most 
common tick species in Scandinavia [3-5]. Over the 
last decades, the incidence and geographical range of 
tick-borne diseases have increased [3,6,7] and pose 
a risk to both human and animal health. Scandinavia 
constitutes the edge of the northern distributional 
range of I. ricinus [4]. The incidence of Lyme borreliosis 
(LB) and tick-borne encephalitis (TBE) is increasing in 
both Norway and Sweden [5,8-10]. In Norway, LB and 
TBE have mostly been reported along the coastline 
in the southern parts of the country [5,8]. However, 
tick-borne encephalitis virus (TBEV) has been found 
in I. ricinus nymphs as far north as ca 115 km from the 
Arctic Circle [11,12]. In Sweden, LB is widespread in the 
southern and eastern regions [4,13,14], whereas TBE is 
concentrated in the south-central and coastal regions, 
with the annual TBE incidence around Stockholm 
exceeding 4 per 100,000 inhabitants [9,10,15,16]. In 
Denmark, LB seems endemic and widespread [3], 
whereas TBEV-infected ticks have only been confirmed 
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Figure 1
Stratification of the study area, showing 159 sample sites and presence/absence of Ixodes ricinus nymphs, Denmark, Norway 
and Sweden, 15 August–30 September 2016

Forest, low NDVI
Forest, high NDVI
Meadow, low NDVI
Meadow, high NDVI
Lakes, rivers and streams
Altitudes > 450 m
Other
Nymph absence

Nymph presence

NDVI: normalised difference vegetation index.

Forest includes the cover types: broad-leaved forest, coniferous forest and mixed forest. Meadow includes: land principally occupied by 
agriculture with significant areas of natural vegetation, natural grasslands, moors and heathland, and transitional woodland-shrub. The lines 
divide each country into equally sized northern and southern strata. Only parts of Norway and Sweden were included in the field study for 
logistic reasons.
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on the island of Bornholm and at one emerging site in 
northern Zealand with two human cases [17,18].

The increase in incidence and geographical range of 
pathogens and their tick vector is likely to be a combi-
nation of several factors, e.g. climate and availability of 
host species [6,7], which all affect the ticks’ life cycle 
and therefore their distribution and the possibility of 
tick-borne diseases being present in specific regions 
[7,19]. Many hard ticks, as  I. ricinus, are sensitive to 
climate and weather [1,6], and are restricted to live in 
areas with high rainfall and vegetation that keeps a 
humidity of at least 80%, to prevent desiccation when 
the ticks are off-host [1,7]. Knowing the distribution of 
ticks may help pinpoint potential risk areas for disease 
transmission and guide health authorities in determin-
ing where to focus surveillance efforts, where to use 
preventive measures, or where to put emphasis on 
informing people.

Determining tick distribution can be a difficult 
task depending on the size of the area of interest. 
Throughout Scandinavia, there have been several 
field studies on ticks and their associated pathogens 
[3,8,12,20-24], but in order to predict tick presence 
in unsampled regions in the present but potentially 
also for the future, we need repeatable survey meth-
ods and to find factors associated with tick abundance 
that can aid us in developing models with high predic-
tive power. In Norway, Jore et al. [2] used sheep serum 
antibody-positive for tick-borne  Anaplasma phagocy-
tophilum  as a proxy for tick presence, finding effects 
of temperature, abundance of large cervids and farm 
animals as well as land cover on tick distribution. 
Studies in Sweden found significant effects of climate, 
vegetation parameters and length of vegetation period 
on tick abundance and distribution [13,14]. In Denmark, 
Jensen [23] found that I. ricinus nymph abundance was 
significantly affected by the interaction between soil 
water capacity and the number of hunted roe deer. 

Table 1
Environmental predictors used in the boosted regression tree models to predict probability of the presence of Ixodes 
ricinus nymphs in the modelled Scandinavian region, Denmark, Norway and Sweden, 15 August–30 September 2016

Source Variables
Modis (Fourier transformed), 2001–12a [44] Middle infra-red

Daytime land surface temperature
Night-time land surface temperature

Normalised difference vegetation index (NDVI)
Enhanced vegetation index (EVI)

WorldClim 1.4, 1960–90 [49] Altitude
BioClim (WorldClim), 1960–90 [49] BIO1: Annual mean temperature

BIO2: Mean diurnal range (mean of monthly (max–min temperature))
BIO3: Isothermality (BIO2/BIO7) × 100

BIO4: Temperature seasonality (standard deviation × 100)
BIO5: Max temperature of warmest month
BIO6: Min temperature of coldest month

BIO7: Temperature annual range (BIO5–BIO6)
BIO8: Mean temperature of wettest quarter
BIO9: Mean temperature of driest quarter

BIO10: Mean temperature of warmest quarter
BIO11: Mean temperature of coldest quarter

BIO12: Annual precipitation
BIO13: Precipitation of wettest month
BIO14: Precipitation of driest month

BIO15: Precipitation seasonality (coefficient of variation)
BIO16: Precipitation of wettest quarter
BIO17: Precipitation of driest quarter

BIO18: Precipitation of warmest quarter
BIO19: Precipitation of coldest quarter

Harmonized World Soil Database v 1.2 (FOA, IIASA), 
2009 [50]

Soil types, depicted by Soil Mapping Unit Code of major soil group (FAO-90 soil 
classification system)

Gridded Population of the World Dataset (SEDAC), 2015 
[47]

Population counts per 1 km2

a For each variable, the Fourier processing output includes mean, minimum, maximum, variance in raw data, combined variance in annual, bi-
annual, and tri-annual cycles as well as amplitude, phase and variance of annual, bi-annual and tri-annual cycle.

All predictors come as raster files with a resolution of 1 km2.
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Several other studies from Europe and North America 
have also found a link between environmental factors 
and tick distribution, such as temperature, vegetation 
indexes and vapour pressure [25-27].

Although climate, land cover and host abundance may 
all play a role in tick distribution, it can often be diffi-
cult to obtain extensive data on host species, whereas 
environmental, weather and climate data are more 
readily available from satellite images and weather 
models. Machine learning techniques are increasingly 
used in developing models for vector predictions as 
they are flexible, can account for nonlinearity and inter-
actions and can handle different types of predictor var-
iables, such as satellite images of environmental data 
[28,29]. Machine learning techniques combined with 
environmental predictors have been used in modelling 
biting midges (Culicoides sp.) [30-33], and mosquitoes 
[28,34,35], and studies on ticks include modelling tick 
distribution or abundance [36-38] as well as the distri-
bution of tick-borne human diseases [15,39].

The risk of human exposure to ticks, and potentially 
tick-borne diseases, depends on tick and host dynam-
ics as well as human behaviour [40]. Several studies 
have reported that living in areas in close proximity to 
forest increases the risk of LB or TBE [41-43] as  I. rici-
nus is more abundant in forest habitats [21,40].

We here present a novel map of nymphal  I. rici-
nus  distribution for Scandinavia using machine learn-
ing algorithms applied to field data, collected in a strict 
standardised design in the period from 15 August to 30 
September 2016. Furthermore, we relate our modelling 
results of tick distribution to public data on human 
population density and to the distance to the predicted 
suitable tick habitats, in order to assess the potential 
public health impact.

Methods

Stratification of study region and site selection
This study was part of a larger study, where addi-
tional objectives were to measure tick abundance and 
collect nymphs for pathogen detection in Denmark, 
Norway and Sweden. The field collection region for  I. 
ricinus  nymphs was for logistical reasons limited 
to 274,660 km2  including all of Denmark, southern 

Norway and southern Sweden as well as the Swedish 
eastern coastal zone (Figure 1). Within this area, we 
excluded all altitudes of 450 m above sea level and 
higher (19,926 km2), where ticks are rare or absent [5]; 
these altitudes were also excluded from the final pre-
diction map.

We stratified the remaining land area (234,191 km2, 
excluding lakes and waterways) using Fourier pro-
cessed satellite imagery of the normalised difference 
vegetation index (NDVI) [44] and Corine land cover data 
(1 km2  resolution) [45] to define forest and meadow 
habitats. Other land cover categories were not sampled 
for ticks and were left out of the prediction map. For 
details about the stratification and Fourier-processed 
satellite imagery, see the Supplement.

We randomly selected 30 first-priority sample sites 
(80% forest and 20% meadow,  Supplementary Table 
S2) in each of the three countries (R 3.4.2 [46] and 
sampleStratified in the raster package). This number 
was logistically the maximum number of sites feasible 
to visit within a reasonable timeframe. We decided to 
collect 80% of the samples from forested areas, as for-
est areas are the most important tick habitat [21,40]. 
Furthermore, 10 alternative sites for each first-priority 
site were randomly selected in the same stratum and 
ordered in priority after shortest distance to original 
site. These alternative sites were created in case of 
problems with access to the priority area or difficulties 
collecting nymphs (for pathogen detection). If a prior-
ity area could not be sampled, we would move on to 
the first alternative site and so forth, keeping the abun-
dance data from the original site if available. For each 
meadow site, we additionally created 10 alternative for-
est sites, to be sampled should it prove impossible to 
collect ticks in meadows.

Because we were interested in investigating tick abun-
dance along the Oslo Fjord in detail, we chose a further 
20 random sites along the fjord (maximum distance of 
800 m from the coast), with 10 alternatives for each 
of the 20 sites (same setup as above,  Supplementary 
Table S3).

Field study
For logistical reasons, we conducted the field study 
between 15 August and 30 September 2016. We 

Table 2
Number of sites surveyed and data on presence/absence of Ixodes ricinus nymphs, Denmark, Norway and Sweden, 
15 August–30 September 2016

Country Total number of sites 
surveyed

Number of sites with presence of Ixodes 
ricinus nymphs

Number of sites with absence of Ixodes 
ricinus nymphs

Denmark 37 32 5
Norway 47 38 9
Sweden 75 55 20
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measured tick abundance during the day between 
11:00 and 16:00, using a 100 m north- and a 100 m 
east-facing transect, meeting at a 90° angle at one end. 
We sampled for questing  I. ricinus  ticks by dragging 
a white flannel cloth (1.05 × 1.15 m, containing lead 
weights at one end) 100 m along each transect, turning 
and dragging it 100 m back; we removed and counted 
larvae, nymphs, adult male and adult female ticks 
every 50 m. As some sites had very low abundance of 
nymphs or none, an alternative site with lower priority 
was chosen for nymph collection, while keeping abun-
dance data from the original sites, thus resulting in a 
different number of sites with abundance measures per 
country. If one or more nymphs were found on the two 
transects, the site was classified as ‘nymph presence’ 
else it was classified as ‘nymph absence’.

Presence/absence modelling
We developed a boosted regression tree (BRT) predic-
tion model on the presence/absence data for nymphs, 
using 92 environmental predictors (Table 1). BRT is a 
machine learning technique based on two algorithms: 
regression trees and gradient boosting [29]. This tech-
nique allows predictions of a response variable, in our 
case presence/absence. The estimated probability of 
presence (PP) can then be plotted as a risk map with a 
resolution of 1 km2. For additional details regarding the 
environmental predictors, the BRT method used, bal-
ancing of the data and cross validation of the model, 
see the Supplement.

The MODIS-derived data (Table 1) stem from time 
series data (12 years), whereas our field sampling only 
occurred in the year 2016. However, at any given time, 
the abundance and presence of  I. ricinus  instars are 
influenced by environmental conditions in previous 
years (adult females surviving to lay eggs, survival of 
eggs during winter, prolonged diapause of nymphs and 
larvae) and are not just dependent on the environmen-
tal conditions in the collection year. Time series data 
provide us with data on seasonality and the potential 
range of the environmental variables, allowing us to 
make more general predictions on I. ricinus distribution 
in southern Scandinavia.

Human risk of tick exposure
After identifying a final prediction map, we used the 
Gridded Population of the World dataset (raster with 1 
km2resolution [47], Table 1), to identify the number of 
people living in areas within various distances to for-
est and meadows where the PP was higher or equal to 
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. 
We chose distances from 1 km to 5 km to depict peo-
ple living in close proximity to potential tick habitats. 
Details can be found in the Supplement.

Results

Field study
We measured tick abundance at 37 sites in Denmark, 
75 sites in Sweden and 47 sites in Norway. The 159 

sites constitute 63.6 km of dragged transects (Table 
2, Figure 1).

Presence/absence modelling
The final BRT model had an accuracy of 0.85, a sen-
sitivity of 91% and a specificity of 60% (given a 
fixed cut-off of 50% PP). The area under the curve 
for the receiver operating characteristic was 0.86 
(Supplementary Figure S2) [29]. As specificity was 
only 60% (with the default PP cut-off of 50%), we plot-
ted the prediction errors (observed data – mean pre-
dicted probability of presence over the folds and the 
repeats) in order to visualise a potential spatial pattern 
(Supplementary Figure S3). From the spatial map, we 
concluded that the low specificity was mainly due to 
sites in Denmark and Norway (close to the Swedish 
border). The final prediction map encompassed 100%, 
68.4% and 85.8% of Denmark, Norway and Sweden’s 
total land area, respectively (Figure 2). We only made 
predictions for forest and meadow habitats that corre-
sponded to our sampling sites. Habitats with at least 
50% PP of tick nymph presence (17.5% of the total mod-
elled area) constituted 15.7% of Denmark’s, 7.4% of 
Norway’s and 23.9% of Sweden’s land area within the 
modelled region. Assuming that tick presence in the 
areas of northern Norway and Sweden not included in 
the modelled region was below 50% PP, the percentage 
of a predicted tick risk of at least 50% was 5.1% and 
20.5% of the total land area of Norway and Sweden, 
respectively. 

The most important predictors in the final model were 
day- and night-time land surface temperatures and 
other parameters related to temperature, land cover 
(lower PP in transitional woodland-shrub compared 
with the other cover types), the middle infrared index 
and related parameters, and parameters related to the 
vegetation indices enhanced vegetation index (EVI) and 
NDVI (see plots of the top 5 predictors, Supplementary 
Figure S4).

Human risk of tick exposure
The modelled region incorporating all altitudes 
included 19.4 million people, with 5.5 million (28.4%), 
4.5 million (23.2%) and 9.4 million (48.5%) in Denmark, 
Norway and Sweden, respectively, which corresponded 
to 100% of the total Danish population, 91% of the total 
Norwegian population and 97% of the total Swedish 
population (based on the population density raster 
file). The proportion of people living within 1 km of for-
est and meadow was consistently lower for Denmark 
(ranging from 11% to 7% with increasing PP) than for 
Norway (ranging from 37% to 13% with increasing PP) 
and Sweden (ranging from 37% to 26% with increasing 
PP) for all PP values (Figure 3). This number increased 
consistently as distance to forest and meadow reached 
5 km with 76–61%, 88–44% and 85–73% of the regional 
population living within 5 km of forest or meadow with 
PP values ranging from 0.1 to 0.9 for Denmark, Norway 
and Sweden, respectively (Figure 3).  Figure 4  depicts 
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Figure 2
Predicted probability of presence of nymphal Ixodes ricinus, produced by the final boosted regression tree model, Denmark, 
Norway and Sweden, 15 August–30 September 2016

   

1

0.75

0.50

0.25

0

Probability of nymph presence

This map depicts the predicted region (100%, 68.4% and 85.8% of Denmark’s, Norway’s and Sweden’s total land area). White areas within 
Denmark, Norway and Sweden are altitudes above 450 m or lakes, rivers and streams, or habitats other than our sampled forest and meadow 
habitats (not predicted).
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areas where people live within 1, 3 and 5 km of forest 
or meadow for a fixed PP value of 50%. 

Discussion
Using the machine learning technique Boosted 
Regression Trees, we were able to create maps of 
the probability of nymphal  I. ricinus  presence in 
Scandinavia with high predictive power based on a 
standardised repeatable procedure. The predicted 
distribution corresponded well with what is generally 
believed about tick distribution in Scandinavia, assum-
ing that a PP lower than 50% is a true absence. The 
higher probabilities of presence around the southern 
Norwegian coast line is in agreement with the distri-
bution maps known for Norway [5,24]. In Sweden, we 
found higher PPs in the southern parts, with a bound-
ary north of the large lakes, above which PP was low. 
This border coincides well with the biogeographical 
and climatic boundary called Limes Norrlandicus (LN) 
that separates the species-rich boreo-nemoral zone 
with shorter and milder winters in the south, from the 
boreal zone in the northern parts of Sweden [48]. Before 
the 1980s, LN used to be the range limit for I. ricinus in 
Sweden [4], but since then, the range of  I. ricinus has 
expanded beyond this biogeographical border albeit at 
low abundances [4]. Our model reflected this pattern, 
showing higher PP below LN and a quick drop in PP 

above LN, but with a low PP throughout this northern 
region. The distinct patches of low PP below the great 
lakes in Sweden follow observed lower temperatures at 
these two elevated areas (Supplementary Figure S5). 
The PP was high throughout Denmark, except for the 
dry heathlands and sandy habitats of central and west-
ern Jutland. This pattern corresponds well with what 
we know about tick biology and the need for a high 
relative humidity to sustain ticks in a given habitat [7].

Our model had low specificity compared with the sensi-
tivity. Since the main priority of this study was predic-
tion of true presences, we refrained from increasing the 
specificity, which could have been obtained by choos-
ing a higher cut-off value than the fixed 50%. In gen-
eral, certainty of true absence can be hard to obtain, 
as presence/absence is always dependent on the sam-
pling effort. Our recorded absences may not have been 
true absences and our model may still have predicted 
presence based on the environmental variables for that 
specific site. Conversely, high local abundance of deer 
hosts may facilitate establishment of ticks in areas for 
which the model predicted absence. In our data, we had 
a low proportion of absences (21%) and for Denmark 
alone, this number was 15.6%. Even though we used 
balancing methods to account for this disproportion, it 
is possible that our empirically collected sample could 

Figure 3
Percentage of people in the predicted region living within 1, 2, 3, 4 and 5 km of forest and meadow with different cut-offs 
for probability of presence of nymphal Ixodes ricinus, Denmark, Norway and Sweden, 15 August–30 September 2016
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not feed the model with enough absence data to learn 
how to accurately predict absences, thus resulting in 
low specificity.

We were able to create a model with high predictive 
power based on environmental predictors. We found 
that land surface temperatures as well as measures of 
high vegetation cover (middle infrared light is absorbed 
by leaves and vegetation, thus densely vegetated areas 
reflect less middle infrared light) positively influenced 
the probability of nymph presence. However, the result-
ing modelled distribution may be due to other environ-
mental factors correlated with these predictors, such 
as the climatic impact on vegetation and host species. 
Although ticks can be directly affected by tempera-
tures and humidity [1,4,6,7], they are also dependent 
on their host species for survival and dispersal [4,7,9]. 
Abundance of host species may in turn be directly and 
indirectly affected by climate and weather [4,7,13], 
thus making it hard to separate factors into causal and 
confounding. Despite lacking fine resolution data on 
host abundance, we were able to use environmental 

predictors to create a biologically plausible model for I. 
ricinuspresence/absence in Scandinavia.

Overlaying our distribution maps for tick nymphs with 
human population density maps revealed the propor-
tion of people potentially at risk for tick exposure. 
Based on studies estimating the risk of LB or TBE in 
relation to landscape characteristics around residen-
tial homes [41-43], we set the maximum distance from 
forest or meadow to 5 km. In general, we found that 
a large percentage of the population in the region 
live within 5 km of forest and meadows with a risk of 
tick presence, even if we set the cut-off for PP to be 
higher than the default 50%. Particularly for Norway, 
our model predicted high probability of nymph pres-
ence only for a very small area around the coast line; 
with a 50% PP cut-off, this area amounted to just 
5.1% of Norway’s total land area. Whereas this small 
area seems negligible, human population densities in 
Norway are relatively higher in these areas, exposing 
more people to tick habitats than we would expect by 
looking at the area alone, as 67% of the Norwegian 
population live within 5 km of forest and meadow 

Figure 4
Areas with people living at different distances to forest/meadow that have a probability of presence of nymphal Ixodes 
ricinus of at least 50%, Denmark, Norway and Sweden, 15 August–30 September 2016

A. 1 km distance B. 3 km distance C. 5 km distance

C. 5 km distance

High: 9,531

Population density/km2

Mid: 5,000
Low: 0
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with PP ≥ 50%. That changing the PP cut-off value had 
a larger effect on the percentage of people at risk in 
Norway compared with Denmark and Sweden is prob-
ably due to a steep temperature gradient as we move 
away from the coast, caused by elevation-dependent 
temperatures (Supplementary Figure S5).

In the United States, Glass et al. [42] found that the 
odds of contracting LB increased within ca 1 km of liv-
ing close to forested habitats. The proportion of people 
living within 1 km of forest or meadow is particularly 
low for Denmark no matter the PP cut-off (11–7%). This 
may however be a gross underestimation of exposure 
risk as Denmark has many fragmented small forest 
patches interspersed with agricultural fields and urban 
areas and these small patches may not show up in our 
coarse resolution of 1 km2. However, little is known 
about how likely these non-sampled areas are as tick 
habitats. In Norway and Sweden, a higher proportion 
of the population (between 37% and 13% at different 
PP cut-off values) are living within 1 km of forest or 
meadow.

This study showed that given the current distribution 
of ticks in Scandinavia, a high percentage of inhabit-
ants are already exposed to the risk of tick bites (within 
a distance of 5 km to forest or meadow with a 50% PP, 
respectively 73.5%, 67.1% and 78.8% of the Danish, 
Norwegian and Swedish population may be at risk). The 
northward expansion of ticks and tick-borne pathogens 
in Norway and Sweden is a considerable public health 
concern [9]. However, human population densities in 
northern Norway and Sweden are low compared with 
the southern regions, and a tick range expanding north 
will therefore affect a smaller proportion of the human 
population. Our results therefore suggest that it may 
be desirable to target our surveillance and preventive 
measures in areas with high human population density 
and where ticks are well established, i.e. the whole of 
Denmark, the southern coastal parts of Norway, south-
ern Sweden and Sweden’s densely populated eastern 
coast along the Bothnian Bay.

Machine learning techniques allowed us to produce 
models and maps with high accuracy and predictive 
sensitivity for the whole region without having to sam-
ple every habitat. These models have highlighted areas 
at high risk of tick exposure and thus potentially of 
vector-borne diseases, and can help in targeting these 
areas for costly surveillance and preventive meas-
ures. It is important to note that our model reflects a 
moment in time, and does not show annual variation 
in tick distribution or how a future potential increase 
in temperatures may affect tick distribution and thus 
the potential for human exposure. Still, the study 
design is consistent between sites and repeatable, 
ensuring reliable future comparisons of tick distribu-
tion, and the produced maps allow for easy external 
validation. The resolution used to create our models 
may be too coarsely grained to catch small hotspots 
of tick presence/absence and the potential for human 

exposure. This is particularly evident for Denmark, 
which, throughout the country, has numerous small 
forest fragments smaller than 1 km2.
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