7 research outputs found

    DIFFERENTIAL EFFECTS OF PROTONTHERAPY AND PHOTONTHERAPY ON HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) POST-TREATMENT AGGRESSIVENESS

    Get PDF
    International audienceHead and neck cancers, the 7 th cause of death worldwide, are currently treated with a combination of surgical resection of the primary tumor, chemotherapy and radiotherapy, depending on the disease stage. Conventional photontherapy nevertheless remains difficult to apply to tumors such as head and neck squamous cell carcinomas (HNSCC), due to the proximity of numerous organs at risk (i.e. salivary glands, esophagus, larynx). Protontherapy has been proposed to treat such sensitive tumors, due to its high precision in tumor targeting. Despite the current therapeutic strategies, the five-year overall survival rate of HNSCC patients is only 53%, with a high percentage of poor response to therapy and a high recurrence rate. Lymph node metastasis, the first sign of tumor progression, has been directly correlated to Vascular Endothelial Growth Factor-C (VEGF-C) expression levels in HNSCC and to VEGF-C-dependent tumoral lymphatic vessel development. In the present study, we investigated the hypothesis that, beside the advantage in dose deposition, protontherapy may show distinct biological properties than photontherapy (at similar doses). We thus examined several in vitro biological behaviors of HNSCC-derived cells when exposed to photons or protons, focusing on molecules with key roles in the progression and prognosis of HNSCC, such as genes/proteins involved in (lymph)angiogenesis/metastasis, inflammation, tumor cell proliferation and anti-tumor immunity, tumorigenic potential. We showed that cell proliferation decreased with the irradiation dose, both in proton and photon irradiated cells. Proton and photon irradiations increased VEGF-C and PD-L1 expression in HNSCC cells. In cells surviving multiple irradiation, key (lymph)angiogenesis and inflammation genes were down-regulated (except for VEGF-C) after protontherapy and up-regulated after photontherapy. Both irradiation types stimulated VEGF-C promoter activity via NF-kB-dependent transcriptional regulation. We conclude that cell resistance, tumor progression and lymphangiogenesis induction is less pronounced after proton irradiation than after photon irradiation. We validated these results by in vivo experiments: Photon-or proton-irradiated HNSCC-derived cells were xenografted subcutaneously into immunodeficient mice. Cells surviving to multiple irradiations by protons or photons generated tumors with higher volume, anarchic architecture and increased density of blood vessels than non-irradiated cells. Increased lymphangiogenesis and a transcriptomic analysis in favor of a more aggressive phenotype were observed in tumors generated with X irradiated cells. Detection of a denser lymphatic vessel network in relapsed tumors from patients receiving conventional X radiotherapy is consistent with these results

    Early Toxicities After High Dose Rate Proton Therapy in Cancer Treatments

    Get PDF
    Background: The conventional dose rate of radiation therapy is 0.01-0.05 Gy per second. According to preclinical studies, an increased dose rate may offer similar anti-tumoral effect while dramatically improving normal tissue protection. This study aims at evaluating the early toxicities for patients irradiated with high dose rate pulsed proton therapy (PT). Materials and methods: A single institution retrospective chart review was performed for patients treated with high dose rate (10 Gy per second) pulsed proton therapy, from September 2016 to April 2020. This included both benign and malignant tumors with ≄3 months follow-up, evaluated for acute (≀2 months) and subacute (>2 months) toxicity after the completion of PT. Results: There were 127 patients identified, with a median follow up of 14.8 months (3-42.9 months). The median age was 55 years (1.6-89). The cohort most commonly consisted of benign disease (55.1%), cranial targets (95.1%), and were treated with surgery prior to PT (56.7%). There was a median total PT dose of 56 Gy (30-74 Gy), dose per fraction of 2 Gy (1-3 Gy), and CTV size of 47.6 ml (5.6-2,106.1 ml). Maximum acute grade ≄2 toxicity were observed in 49 (38.6%) patients, of which 8 (6.3%) experienced grade 3 toxicity. No acute grade 4 or 5 toxicity was observed. Maximum subacute grade 2, 3, and 4 toxicity were discovered in 25 (19.7%), 12 (9.4%), and 1 (0.8%) patient(s), respectively. Conclusion: In this cohort, utilizing high dose rate proton therapy (10 Gy per second) did not result in a major decrease in acute and subacute toxicity. Longer follow-up and comparative studies with conventional dose rate are required to evaluate whether this approach offers a toxicity benefit

    Oncologic and visual outcomes after postoperative proton therapy of localized conjunctival melanomas

    No full text
    International audienceIntroductionconjunctival melanomas have high local relapse rates. Oncologic and visual outcomes can be improved with proton therapy and no-touch surgery.Material and methodsa monocentric retrospective study of consecutive patients treated with surgery and proton therapy for conjunctival melanoma was conducted. Proton therapy was performed to a total dose of 45 Grays physical dose delivered in eight fractions over two weeks.ResultsNinety-two patients were included. The mean age was 63-year-old. 65.2% of patients had primary acquired melanosis. The mean tumor thickness and diameter was 2.5 mm and 7.0 mm respectively. The clinical stage was T1 in 71.6% of cases, with a quadrangular involvement of more than 90° in 69% of cases. Conjunctival melanomas were of epithelioid cell-type in 40% of cases. Mean follow-up was 4.7 years. Five-year local failure rate was 33.2%. Of 25 local recurrences, 14 were marginal/out-of-field, 4 in-field, others were undetermined. First surgery at expert center resulted in 24.3% of local failure at 5 years versus 38.7% if performed elsewhere (p = 0.41). Salvage exenteration was performed in 13 patients. Tumor stage and quadrangular involvement were significant factors for local failure. Five-year progression-free survival and cause-specific death rates were 61.5 and 3.6%. Stage and epithelioid type were associated with poorer progression-free survival. Trophic toxicity occurred in 22.9% of patients and was treated locally, with grafts in 7 patients. Glaucoma and cataract occurred in 13 and 22 patients respectively. Prognostic factors for visual deterioration were age, tumor extent (multifocality, quadrangular involvement > 180°) and cryotherapy.Conclusions5-year local failure rate after postoperative proton therapy for conjunctival melanoma was of 33.2%. Radiation-induced complications were overall manageable

    LE VEGFC RÉGULE NÉGATIVEMENT LA CROISSANCE ET L'AGRESSIVITÉ DES CELLULES DE MÉDULLOBLASTOME

    No full text
    International audienceMedulloblastoma (MB), the most common brain pediatric tumor, is a pathology composed of four molecular subgroups. Despite a multimodal treatment, 30% of the patients eventually relapse, with the fatal appearance of metastases within 5 years. The major actors of meta-static dissemination are the lymphatic vessel growth factor, VEGFC, and its receptors/co-receptors. Here, we show that VEGFC is inversely correlated to cell aggressiveness. Indeed, VEGFC decreases MB cell proliferation and migration, and their ability to form pseudo-vessel in vitro. Irradiation resistant-cells, which present high levels of VEGFC, lose the ability to migrate and to form vessel-like structures. Thus, irradiation reduces MB cell aggressiveness via a VEGFC-dependent process. Cells intrinsically or ectopically overexpressing VEGFC and irradiation-resistant cells form smaller experimental tumors in nude mice. Opposite to the common dogma, our results give strong arguments in favor of VEGFC as a negative regulator of MB growth.Le médulloblastome (MB), la tumeur pédiatrique maligne cérébrale la plus courante, est une pathologie composée de quatre sous-groupes moléculaires. Malgré un traitement multimodal, 30% des patients rechutent finalement, avec l'apparition fatale de métastases dans les 5 ans. Les principaux acteurs de la dissémination métastatique sont le facteur de croissance des vaisseaux lymphatiques, le VEGFC, et ses récepteurs / co-récepteurs. Ici, nous montrons que le VEGFC est inversement corrélé à l'agressivité cellulaire. En effet, le VEGFC diminue la prolifération et la migration des cellules MB, ainsi que leur capacité à former des pseudo-vaisseaux in vitro. Les cellules résistantes à l'irradiation, qui présentent des niveaux élevés de VEGFC, perdent la capacité de migrer et de former des structures de type « vaisseaux ». Ainsi, l'irradiation réduit l'agressivité des cellules MB via un processus dépendant du VEGFC. Les cellules surexprimant le VEGFC de façon intrinsÚque ou ectopique et les cellules résistantes à l'irradiation forment des tumeurs expérimentales plus petites chez la souris nude. Contrairement au dogme commun, nos résultats donnent de solides arguments en faveur du rÎle de régulateur négatif du VEGFC sur la croissance du MB
    corecore