290 research outputs found

    Building a Methodological Foundation for Impactful Urban Planetary Health Science

    Get PDF
    Anthropogenic environmental change will heavily impact cities, yet associated health risks will depend significantly on decisions made by urban leaders across a wide range of non-health sectors, including transport, energy, housing, basic urban services, and others. A subset of planetary health researchers focus on understanding the urban health impacts of global environmental change, and how these vary globally and within cities. Such researchers increasingly adopt collaborative transdisciplinary approaches to engage policy-makers, private citizens, and other actors in identifying and evaluating potential policy solutions that will reduce environmental impacts in ways that simultaneously promote health, equity, and/or local economies-in other words, maximising 'co-benefits'. This report presents observations from a participatory workshop focused on challenges and opportunities for urban planetary health research. The workshop, held at the 16th International Conference on Urban Health (ICUH) in Xiamen, China, in November 2019, brought together 49 participants and covered topics related to collaboration, data, and research impact. It featured research projects funded by the Wellcome Trust's Our Planet Our Health (OPOH) programme. This report aims to concisely summarise and disseminate participants' collective contributions to current methodological practice in urban planetary health research

    Genetic variation of macronutrient tolerance in Drosophila melanogaster

    Get PDF
    Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of similar to 200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.Peer reviewe

    Polymorphic variants of genes involved in homocysteine metabolism in celiac disease

    Get PDF
    Celiac disease (CD) is a polygenic chronic enteropathy conferring an increased risk for various nutrient deficiency states. Hyperhomocysteinemia is a frequent finding in CD and may be related to the development of venous thrombosis, cardiovascular disease, and stroke in untreated CD patients. Recently, a possible excess in the frequency of the MTHFR c.677C>T (rs1801133) gene variant in CD patients was reported. The purpose of this study was to determine if there exist differences in the distribution of polymorphic variants of genes involved in homocysteine/methyl group metabolism between CD patients and the general population. A set of 10 gene polymorphisms (MTHFR rs1801133, MTR rs1805087, MTHFD1 rs2236225, MTRR rs1801394, CBS 844ins68, BHMT1 rs7356530 and rs3733890, BHMT2 rs526264 and rs625879, and TCN2 rs1801198) was tested in 134 patients with CD and 160 matched healthy controls. The frequency of the MTR rs1805087 GG genotype in CD patients was lower than in controls (0.01 and 0.06, respectively), although statistical significance was not achieved (P = 0.06). For the other analyzed polymorphisms, there was no evidence of difference in both allelic and genotypic distribution between cases and controls. The exhaustive Multifactor Dimensionality Reduction analysis revealed no combination of interactive polymorphisms predicting the incidence of CD. In contrast to the well-documented clinical observations of increased risks of vascular disease in patients with longstanding untreated CD, in our group of patients no significant association with CD was found for all tested polymorphic variants of genes involved in homocysteine metabolism. These findings should be replicated in studies with a larger sample size

    3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors.

    Get PDF
    Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells\u27 transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression

    Viscoelastic adaptation of tendon graft material to compression: biomechanical quantification of graft preconditioning

    Full text link
    PURPOSE: The tensile viscoelastic behaviour of tendon tissue is of central biomechanical importance and well examined. However, the viscoelastic tendon adaptation to external compression, such as when a tendon graft is fixated with an interference screw, has not been investigated before. Here, we quantify this adaptive behaviour in order to develop a new method to mechanically precondition tendon grafts and to better understand volumetric changes of tendinous tissue. The hypothesis of this study was that under compressive loads, tendon grafts will undergo a temporary volumetric (and therefore diametric) reduction, due to the extrusion of water from the tendon. METHODS: Compressive testing was performed on a material testing machine and load applied through the use of a custom-made mould, with a semi-circular cross section to accommodate the tendon graft. The effects of different compressive forces on the length, diameter and weight of tendon grafts were measured by calipers and a weighing scale, respectively. Further, different strain rates (1 vs. 10 mm/min) (n = 6, per rate), compression method (steady compression vs. creep) (n = 15 for each method) and different compression durations (1, 5, 10 min) (n = 5 for each duration) were tested to identify the most effective combination to reduce graft size by preserving its macroscopic structure. RESULTS: The effect of compression on volume reduction (75 % of initial volume and weight) reached a plateau at 6,000 N on an 8-mm tendon bundle. Length thereby increased by approximately 10 %. Both steady compression and creeping were able to reduce dimensions of the graft; however, creeping was more effective. There was no difference in effect with different durations for compression (p > 0.05) in both methods. CONCLUSION: The viscoelastic behaviour of hamstring tendon grafts under pressure allows preconditioning of the grafts for reduction of volume and diameter and therefore to drill a smaller bone tunnel, retaining more of the original bone. At the same time, the collagen content of the transplant is preserved and a tight fit of the transplant in the bone tunnel achieved

    Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    Get PDF
    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation

    Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    Get PDF
    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity

    Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia rhizoxinica </it>is an intracellular symbiont of the phytopathogenic zygomycete <it>Rhizopus microsporus</it>, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of <it>B. rhizoxinica </it>HKI 0454 - a type strain of endofungal <it>Burkholderia </it>species.</p> <p>Results</p> <p>The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living <it>Burkholderia </it>species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, <it>B. rhizoxinica </it>lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors.</p> <p>Conclusions</p> <p><it>B. rhizoxinica </it>is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that <it>B. rhizoxinica </it>is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. <it>In silico </it>analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.</p
    corecore