76 research outputs found

    On the nature of the X-ray absorption in the Seyfert 2 galaxy NGC 4507

    Get PDF
    We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5-10 keV spectrum is rather complex and consists of several components: (1) a hard X-ray power law heavily absorbed by a column density of about 3 10^23 cm^-2, (2) a narrow Fe Kalpha line at 6.4 keV, (3) soft continuum emission well above the extrapolation of the absorbed hard power law, (4) a narrow emission line at about 0.9 keV. The line energy, consistent with highly ionized Neon (NeIX), may indicate that the soft X-ray emission derives from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.Comment: 8 pages, LateX, 5 figures (included). Uses mn.sty and epsfig.sty. To appear in MNRA

    Mitochondrial dysfunction increases fatty acid β-oxidation and translates into impaired neuroblast maturation

    Get PDF
    The metabolic transition from anaerobic glycolysis and fatty acid \u3b2-oxidation to glycolysis coupled to oxidative phosphorylation is a key process for the transition of quiescent neural stem cells to proliferative neural progenitor cells. However, a full characterization of the metabolic shift and the involvement of mitochondria during the last step of neurogenesis, from neuroblasts to neuron maturation, is still elusive. Here, we describe a model of neuroblasts, Neuro2a cells, with impaired differentiation capacity due to mitochondrial dysfunction. Using a detailed biochemical characterization consisting of steady-state metabolomics and metabolic flux analysis, we find increased fatty acid \u3b2-oxidation as a peculiar feature of neuroblasts with altered mitochondria. The consequent metabolic switch favors neuroblast proliferation at the expense of neuron maturation

    Butyrate prevents visceral adipose tissue inflammation and metabolic alterations in a Friedreich's ataxia mouse model

    Get PDF
    Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNAseq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management

    Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth

    Get PDF
    : Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutations

    Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements.

    Get PDF
    Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural vari- ants (SVs) (variants R 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic vari- ation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences

    Elovl5 is required for proper action potential conduction along peripheral myelinated fibers

    Get PDF
    Elovl5 elongates fatty acids with 18 carbon atoms and in cooperation with other enzymes guarantees the normal levels of very long‐chain fatty acids, which are necessary for a proper membrane structure. Action potential conduction along myelinated axons depends on structural integrity of myelin, which is maintained by a correct amount of fatty acids and a proper interaction between fatty acids and myelin proteins. We hypothesized that in Elovl5 (−/−) mice, the lack of elongation of Elovl5 substrates might cause alterations of myelin structure. The analysis of myelin ultrastructure showed an enlarged periodicity with reduced G‐ratio across all axonal diameters. We hypothesized that the structural alteration of myelin might affect the conduction of action potentials. The sciatic nerve conduction velocity was significantly reduced without change in the amplitude of the nerve compound potential, suggesting a myelin defect without a concomitant axonal degeneration. Since Elovl5 is important in attaining normal amounts of polyunsaturated fatty acids, which are the principal component of myelin, we performed a lipidomic analysis of peripheral nerves of Elovl5‐deficient mice. The results revealed an unbalance, with reduction of fatty acids longer than 18 carbon atoms relative to shorter ones. In addition, the ratio of saturated to unsaturated fatty acids was strongly increased. These findings point out the essential role of Elovl5 in the peripheral nervous system in supporting the normal structure of myelin, which is the key element for a proper conduction of electrical signals along myelinated nerves

    Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue

    Get PDF
    Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT

    Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders.

    Get PDF
    Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversionsretrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 1
    corecore