8 research outputs found
A rare cause of primary adrenal insufficiency due to a homozygous Arg188Cys mutation in the STAR gene
Steroidogenic acute regulatory protein (STAR) is a key protein for the intracellular transport of cholesterol to the mitochondrium in endocrine organs (e.g. adrenal gland, ovaries, testes) and essential for the synthesis of all steroid hormones. Several mutations have been described and the clinical phenotype varies strongly and may be grouped into classic lipoid congenital adrenal hyperplasia (LCAH), in which all steroidogenesis is disrupted, and non-classic LCAH, which resembles familial glucocorticoid deficiency (FGD), which affects predominantly adrenal functions. Classic LCAH is characterized by early and potentially life-threatening manifestation of primary adrenal insufficiency (PAI) with electrolyte disturbances and 46,XY disorder of sex development (DSD) in males as well as lack of pubertal development in both sexes. Non-classic LCAH manifests usually later in life with PAI. Nevertheless, life-long follow-up of gonadal function is warranted. We describe a 26-year-old female patient who was diagnosed with PAI early in life without detailed diagnostic work-up. At the age of 14 months, she presented with hyperpigmentation, elevated ACTH and low cortisol levels. As her older brother was diagnosed with PAI two years earlier, she was put on hydrocortisone and fludrocortisone replacement therapy before an Addisonian crisis occurred. Upon review of her case in adulthood, consanguinity was noted in the family. Genetic analysis for PAI revealed a homozygous mutation in the STAR gene (c.562C>T, p.Arg188Cys) in both siblings. This mutation has been previously described in non-classic LCAH. This case illustrates that early onset, familial PAI is likely due to autosomal recessive genetic mutations in known genes causing PAI
A rare cause of primary adrenal insufficiency due to a homozygous Arg188Cys mutation in the gene.
Steroidogenic acute regulatory protein () is a key protein for the intracellular transport of cholesterol to the mitochondrium in endocrine organs (e.g. adrenal gland, ovaries, testes) and essential for the synthesis of all steroid hormones. Several mutations have been described and the clinical phenotype varies strongly and may be grouped into classic lipoid congenital adrenal hyperplasia (LCAH), in which all steroidogenesis is disrupted, and non-classic LCAH, which resembles familial glucocorticoid deficiency (FGD), which affects predominantly adrenal functions. Classic LCAH is characterized by early and potentially life-threatening manifestation of primary adrenal insufficiency (PAI) with electrolyte disturbances and 46,XY disorder of sex development (DSD) in males as well as lack of pubertal development in both sexes. Non-classic LCAH manifests usually later in life with PAI. Nevertheless, life-long follow-up of gonadal function is warranted. We describe a 26-year-old female patient who was diagnosed with PAI early in life without detailed diagnostic work-up. At the age of 14 months, she presented with hyperpigmentation, elevated ACTH and low cortisol levels. As her older brother was diagnosed with PAI two years earlier, she was put on hydrocortisone and fludrocortisone replacement therapy before an Addisonian crisis occurred. Upon review of her case in adulthood, consanguinity was noted in the family. Genetic analysis for PAI revealed a homozygous mutation in the gene (c.562C>T, p.Arg188Cys) in both siblings. This mutation has been previously described in non-classic LCAH. This case illustrates that early onset, familial PAI is likely due to autosomal recessive genetic mutations in known genes causing PAI.
Learning points
In childhood-onset PAI, a genetic cause is most likely, especially in families with consanguinity.Adult patients with an etiologically unsolved PAI should be reviewed repeatedly and genetic work-up should be considered.Knowing the exact genetic diagnosis in PAI is essential for genetic counselling and may allow disease-specific treatment.Young men and women with NCLAH due to homozygous Arg188Cys mutation should be investigated for their gonadal function as hypogonadism and infertility might occur during puberty or in early adulthood
Guía de actuación en las anomalías de la diferenciación sexual (ADS) / desarrollo sexual diferente (DSD).
Disorders of Sex Development (DSD) include a wide range of anomalies among the chromosomal, gonadal, and phenotypic (genital) characteristics that define sexual differentiation. At present, a definition as Different Sexual Development (DSD) is currently preferred. They originate in the pre-natal stage, are classified according to the sex chromosomes present in the karyotype. The known genetic causes are numerous and heterogeneous, although, in some cases, they may be secondary to maternal factors and/or exposure to endocrine-disrupting chemicals (EDCs). The diagnosis and treatment of DSD always requires multidisciplinary medical and psychosocial care. An aetiological diagnosis needs the interaction of clinical, biochemical (hormonal), genetic, imaging and, sometimes, surgical examinations. The treatment should deal with sex assignment, the possible need for hormone replacement therapy (adrenal if adrenal function is impaired, and with sex steroids from pubertal age if gonadal function is impaired), as well as the need for surgery on genital structures (currently deferred when possible) and/or on gonads (depending on the risk of malignancy), the need of psychosocial support and, finally, an adequate organisation of the transition to adult medical specialties. Patient Support Groups have a fundamental role in the support of families, as well as the interaction with professional and social media. The use of Registries and the collaboration between professionals in Working Groups of national and international medical societies are crucial for improving the diagnostic and therapeutic tools required for the care of patients with DSD