10 research outputs found

    Comparative Study of Inter-Strand Coupling Current Models for Accelerator Magnets

    Get PDF
    Inter-strand coupling currents (ISCCs) contribute to field errors and losses in Rutherford-type superconducting cables in the time-transient regime. A field change induces eddy currents in loops formed by the superconducting twisted strands and the resistive matrix. The implementation of ISCC models in ROXIE allows to combine ISCC calculations with models for persistent current sand inter- filament coupling currents. Saturation effects in iron can be taken into account as well. The predictions of different ISCC models with regard to losses and field errors are compared for two design versions of the LHC main dipole

    First Computation of Parasitic Fields in LHC Dipole Magnet Interconnects

    Get PDF
    The Large Hadron Collider (LHC), now under construction at CERN, will rely on about 1600 main superconducting dipole and quadrupole magnets and over 7400 superconducting corrector magnets distributed around the eight sectors of the machine. Each magnet type is powered by dedicated superconducting busbars running along the sectors and mounted on the iron yokes of the main dipole and quadruple magnets. In the numerous magnet interconnects, the busbars are not magnetically shielded from the beam pipes and produce parasitic fields that can affect beam optics. We review the 3-D models that have been developed with ROXIE to compute the parasitic fields and we discuss their potential impacts on machine performance

    The P3^3 Experiment: A Positron Source Demonstrator for Future Lepton Colliders

    Full text link
    The PSI Positron Production (P3^3 or P-cubed) experiment is a demonstrator for a e+ source and capture system with potential to improve the state-of-the-art e+ yield by an order of magnitude. The experiment is driven by the FCC-ee injector study and will be hosted in the SwissFEL facility at the Paul Scherrer Institute in Switzerland. This paper is an overview of the P3^3 design at an advanced stage, with a particular emphasis on a novel e+ capture system and its associated beam dynamics. Additionally, a concept for the experiment diagnostics is presented, as well as the key points of the ongoing installation works

    The practical Pomeron for high energy proton collimation

    Get PDF
    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC

    Coil End Design for Superconducting Magnets Applying Differential Geometry Methods

    No full text
    An integrated design approach is used at CERN for the design and optimization of superconducting accelerator magnets, with the ROXIE program package as the key tool. The layout of the coil ends has proven in most cases to be the limiting factor for the magnets' quench performance. The objectives for coil end design are therefore to minimize the mechanical stress on the cables, to optimize the integrated multipole content and to limit the peak field enhancement. This paper introduces a new approach based on differential geometry methods that allows for the geometrical and mechanical optimization of cos nq coil ends

    A Vector Hysteresis Model for Superconducting Filament Magnetization in Accelerator Magnets

    No full text
    Magnetic field changes in the coils of superconducting magnets are shielded from the filaments' core by so-called persistent currents which can be modeled by means of the critical state model. This paper presents a semi-analytical 2-dimensional model of the filament magnetization due to persistent currents for changes of the magnitude of the magnetic induction and its direction while taking the field dependence of the critical current density into account. The model is combined with numerical field computation for the calculation of field errors in superconducting magnets. The filament magnetization and the field errors in a nested orbit corrector magnet for the LHC project at CERN have been calculated as an example

    BOX: An efficient benchmark facility for the study and mitigation of interface-induced training in accelerator type high-field superconducting magnets

    Get PDF
    For 30 years, training and unpredictable degradation in accelerator type high-field Nb3Sn magnets have seriously hampered Nb3Sn application. Training and deterioration have to be solved or at least better controlled. The global picture shows that most of the R&D and short model magnets start to train at some 40%-70% of the critical current and then creep up to almost the critical current within some 10-50 training steps. A typical class of failures leading to quenches is largely characterized by cracking and debonding at the interfaces between cable and glass-resin insulation, as well as between insulation and coil former. The study of training by means of testing demonstrator coils is rather expensive and time consuming. However, advances in magnet design and fabrication can also be assessed and benchmarked using BOX, the bonding experiment presented here, that produces maximum uniaxial Lorentz forces at some 7.5 T in a controlled experiment performed in 11 T solenoid facility at the University of Twente. BOX samples use only one meter of Nb3Sn cable inserted in a three-wave meandering slot in a flat metallic sample holder, reproducing magnet-relevant interactions between cable, insulation, impregnated materials and coil former. The meander shape exposes seven straight cable sections to a transverse magnetic field, thereby generating a representative level of shear stress at the interfaces. In this way, characteristic training curves of magnets can be mimicked and solutions studied. We aim to demonstrate with various samples failure mechanisms of high-field Nb3Sn magnets without the need to manufacture complete magnets. BOX may thus be expected to allow for quick and affordable testing of novel insulations, impregnation materials, coatings and interfaces for Nb3Sn magnets achieved by investigating various resins, fillers and more

    Recent Test Results of the Fast-Pulsed 4 T COSΘ\Theta Dipole GSI 001

    No full text
    For the FAIR-project at GSI a model dipole was built at BNL with the nominal field of 4 T and a nominal ramp rate of 1 T/s. The magnet design was similar to the RHIC dipole with some changes for loss reduction and better cooling. The magnet was already successfully tested in a vertical cryostat with good training behaviour. Cryogenic losses were measured and first results of field harmonics were published. However, for a better understanding of the cooling process quench currents at several ramp rates were investigated. Detailed measurements of the field harmonics at different ramp rates and at several cycles were performed. To separate the effects of the coil and the iron yoke the magnet was disassembled and tested as collared coil only. Recent test results will be presented

    A Statistical Analysis of Electrical Faults in the LHC Superconducting Magnets and Circuits

    No full text
    The large hadron collider (LHC) at CERN has been operating and generating physics experimental data since September 2008, and following its first long shut down, it has entered a second, 4-year-long physics run. It is to date the largest superconducting installation ever built, counting over 9000 magnets along its 27-km long circumference. A significant operational experience has been accumulated, including the occurrence and consequences of electrical faults at the level of the superconducting magnets, as well as their protection and instrumentation circuits. The purpose of this paper is to provide a first overview of the most common electrical faults and their frequency of occurrence in the first years of operation, and to perform a statistical analysis that can provide reference values for future productions of similar dimensions and nature
    corecore