68 research outputs found

    Rapid detection of 2-hydroxyglutarate in frozen sections of IDH mutant tumors by MALDI-TOF mass spectrometry

    Get PDF
    All isocitrate dehydrogenase (IDH) mutant solid neoplasms exhibit highly elevated levels of D-2-hydroxyglutarate (D-2HG). Detection of 2HG in tumor tissues currently is performed by gas or liquid chromatography-mass spectrometry (GC- or LC-MS) or biochemical detection. While these methods are highly accurate, a considerable amount of time for tissue preparation and a relatively high amount of tissue is required for testing. We here present a rapid approach to detect 2HG in brain tumor tissue based on matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF). We analyzed 26 brain tumor samples with known IDH1 or IDH2 mutation and compared readouts to those from 28 brain tumor samples of wildtype IDH status. IDH mutant samples exhibited a clear positive signal for 2HG which was not observed in any of the IDH wildtype tumors. Our analytical pipeline allowed for 2HG detection in less than 5 min. Data were validated by determining 2HG levels in all tissues with a biochemical assay. In conclusion, we developed a protocol for rapid detection of 2HG levels and illustrate the possibility to use MALDI-TOF for the detection of metabolites on frozen tissue sections in a diagnostic setting

    Green Edge ice camp campaigns : understanding the processes controlling the under-ice Arctic phytoplankton spring bloom

    Get PDF
    The Green Edge initiative was developed to investigate the processes controlling the primary productivity and fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797∘ N, 63.7895∘ W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea-ice cover from the surface to the bottom (at 360 m depth) to better understand the factors driving the PSB. Key variables, such as conservative temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured at the ice camp. Meteorological and snow-relevant variables were also monitored. Here, we present the results of a joint effort to tidy and standardize the collected datasets, which will facilitate their reuse in other Arctic studies

    Chapitre 7. Dimensions Ă©conomique et sociotechnique de l'Ă©pandage des Mafor

    No full text
    Ce chapitre aborde les multiples dimensions de l’existence sociale des Mafor, ces matiĂšres qui adviennent auxsociĂ©tĂ©s le plus souvent comme en excĂšs par rapport Ă  un processus premier de production ou d’utilisation etdont il faut bien, cependant, organiser le devenir. La problĂ©matique n’est pas nouvelle, on aura l’occasion de lerappeler, mais elle prend une acuitĂ© toute particuliĂšre avec l’accroissement des quantitĂ©s produites et la montĂ©edes exigences prĂ©sidant Ă  leur gestion.Plusieurs angles d’approche ont Ă©tĂ© croisĂ©s pour Ă©clairer cet enjeu sensible et complexe. En particulier estprĂ©sentĂ© dans ce chapitre le fonctionnement Ă©conomique des marchĂ©s des Mafor, en termes de prix, de coĂ»ts, etd’évaluation Ă©conomique des externalitĂ©s gĂ©nĂ©rĂ©es par l’utilisation agricole des Mafor. L’expĂ©rience sociale desmultiples groupes concernĂ©s par certains dĂ©bordements, redoutĂ©s ou vĂ©cus, de ces trajectoires, comme lesnuisances odorantes que peuvent provoquer les Ă©pandages, sont Ă©galement abordĂ©s.La section consacrĂ©e Ă  l’économie des Mafor concerne plus prĂ©cisĂ©ment l’organisation des marchĂ©s de Mafor.Rassemblant des donnĂ©es Ă©parses et lacunaires, elle s’efforce en premier lieu d’éclairer la question du prix, ouplus exactement des prix des Mafor – qui s’étagent de « 0€ rendu racine » pour les boues urbaines Ă  426€/t pourl’engrais Ă  base de guano de poisson – et de cerner quelques-uns de leurs dĂ©terminants. Dans la mesure oĂč lesMafor sont, partiellement, substituables aux engrais de synthĂšse, une partie est Ă©galement consacrĂ©e Ă l’évolution des prix de ces engrais. L’analyse Ă©conomique se poursuit par une tentative de reconstitution descoĂ»ts de gestion des Mafor, et se prolonge par une rĂ©flexion sur le coĂ»t des impacts environnementaux liĂ©s auxĂ©pandages de Mafor, une problĂ©matique qui n’en est encore qu’à ses balbutiements.La question des coĂ»ts intervient Ă  n’en pas douter dans la dĂ©cision des agriculteurs de recourir ou non Ă  desMafor. Mais on ne saurait rĂ©duire Ă  cet enjeu Ă©conomique la problĂ©matique de l’insertion des Mafor dans lessystĂšmes techniques, abordĂ© dans une deuxiĂšme partie. L’analyse est dĂ©ployĂ©e Ă  un double niveau : celui del’exploitation agricole d’une part, celui des territoires de circulation des Mafor d’autre part. Il s'agit de reconstituerle jeu des dĂ©terminants qui peuvent conduire des agriculteurs Ă  utiliser des Mafor : ils apparaissent liĂ©s pourpartie aux reprĂ©sentations qu’ils se font des Mafor, et pour une autre partie Ă  un ensemble de critĂšres relevant del’univers technico-professionnel. Mais quels que soient ses dĂ©terminants, qui restent Ă  mieux prĂ©ciser, la dĂ©cisiond’usage ouvre un nouvel ordre de questionnement : qu’est-ce qui va conduire, en fin de compte, l’agriculteur Ă Ă©pandre telle quantitĂ© de telle Mafor sur telle parcelle ? Les facteurs principaux qui gouvernent la dĂ©terminationtechnique des parcelles et des pĂ©riodes d’épandage, l’attribution de certaines Mafor Ă  certaines cultures, et enfinle complexe calcul des doses d’apport sont ainsi recensĂ©s. A cet Ă©gard, si la variabilitĂ© des teneurs en Ă©lĂ©mentsfertilisants et les faibles connaissances et confiance des agriculteurs dans les modĂšles de dynamique deminĂ©ralisation des Mafor rendent leur insertion dans le raisonnement agronomique complexe, certains outilsd’aide Ă  la dĂ©cision peuvent toutefois le faciliter. Enfin est synthĂ©tisĂ© un ensemble de travaux consacrĂ©s Ă  lagestion territoriale des Mafor, Ă©chelle qui s’impose lorsque la production dĂ©passe la capacitĂ© d’épandage. Larecherche vise notamment Ă  fournir des outils d’objectivation des surfaces disponibles Ă  l’échelle d’un territoire,et Ă  modĂ©liser les Ă©changes entre producteurs et utilisateurs

    The factory of the future: two case studies to illustrate the role of energy in two industrial sectors

    No full text
    International audienceThe "factory of the future" is a widely discussed concept which promises to underpin the next wave of productivity in industry by integrating new technologies-especially information and communication technologies-into industrial production. Based on a comprehensive bibliography analysis, this article refines the concept of the factory of the future as a factory combining smart, green and human dimensions to achieve a higher level of productivity.The concept of the factory of the future stresses the central role of information networks for optimising and flexibilising production processes. In addition, energy supply and energy usage are decisive levers in enhancing the global productivity by using energy in the optimal way. The smart, green and human dimensions of the factory of the future are involved in each industry sector. However, each sector faces specific challenges. This is illustrated by two case studies on the role of energy in two different industry sectors. A sugar factory is analysed as an illustration of the energy intensive process industry, where gains are achieved by mastering local energy production and thermodynamic processes. Combined heat and power generation allows quasi-energy-autonomous factories and energy is reused several times in cascades in the production process. A production machine factory is analysed as an illustration of the downstream industry in which the smart use of energy increases productivity. This innovative factory uses the best available technologies, on site energy production with renewable energies, heat recovery and storage, the use of natural lighting and cooling for factory buildings and energy management systems. These two examples underline that the factory of the future will take multiple forms. These examples also show that the factory of the future is already built today. For energy companies, issues related to the factory of the future are the decentralised production of energy mainly based on renewable energies, the monitoring and management of energy consumption using information and communication technologies, flexible and adaptive energy networks to allow flexible and modular production and energy analysis methods for the improvement of energy-intensive production processes. The concept of the factory of the future remains a challenge for the energy companies. Many aspects of the factory of the future can be built through continuous improvement which can be integrated in daily operations. However, new business models and technological disruptions can bring unforeseen changes to industry

    The factory of the future: two case studies to illustrate the role of energy in two industrial sectors

    No full text
    International audienceThe "factory of the future" is a widely discussed concept which promises to underpin the next wave of productivity in industry by integrating new technologies-especially information and communication technologies-into industrial production. Based on a comprehensive bibliography analysis, this article refines the concept of the factory of the future as a factory combining smart, green and human dimensions to achieve a higher level of productivity.The concept of the factory of the future stresses the central role of information networks for optimising and flexibilising production processes. In addition, energy supply and energy usage are decisive levers in enhancing the global productivity by using energy in the optimal way. The smart, green and human dimensions of the factory of the future are involved in each industry sector. However, each sector faces specific challenges. This is illustrated by two case studies on the role of energy in two different industry sectors. A sugar factory is analysed as an illustration of the energy intensive process industry, where gains are achieved by mastering local energy production and thermodynamic processes. Combined heat and power generation allows quasi-energy-autonomous factories and energy is reused several times in cascades in the production process. A production machine factory is analysed as an illustration of the downstream industry in which the smart use of energy increases productivity. This innovative factory uses the best available technologies, on site energy production with renewable energies, heat recovery and storage, the use of natural lighting and cooling for factory buildings and energy management systems. These two examples underline that the factory of the future will take multiple forms. These examples also show that the factory of the future is already built today. For energy companies, issues related to the factory of the future are the decentralised production of energy mainly based on renewable energies, the monitoring and management of energy consumption using information and communication technologies, flexible and adaptive energy networks to allow flexible and modular production and energy analysis methods for the improvement of energy-intensive production processes. The concept of the factory of the future remains a challenge for the energy companies. Many aspects of the factory of the future can be built through continuous improvement which can be integrated in daily operations. However, new business models and technological disruptions can bring unforeseen changes to industry
    • 

    corecore