54 research outputs found

    La condensation de l'hélium 4 dans les aérogels : une réalisation expérimentale du RFIM athermique

    Get PDF
    Up to now, the effect of disorder on critical phenomena has been mainly studied theoretically. The motivation of these studies is to understand to what extent the difference between the behavior of the real systems and the ideal theoretical models is due to disorder. This thesis addresses this problem experimentally through the condensation of helium 4 in silica aerogels. This system provides the opportunity to tune the disorder strength. More precisely, we show that this phenomenon is an experimental realization of the athermal Random Field Ising Model (RFIM) studied by Sethna et al. (Phys. Rev. Lett., 70, 3347 (1993)). To this end, we observe two properties of this model, in agreement with numerical simulations done by Detcheverry et al. on a lattice gas model (Phys. Rev. E, 72, 051506 (2005)): the existence of disorder driven critical points and the Return Point Memory (RPM). The change of shape of the adsorption isotherms measured by light scattering is interpreted as the signature of the disorder driven critical points. In order to detect the avalanches predicted by the Detcheverry et al.'s model, we have developed a technique based on the great sensitivity of the speckle patterns to the local microscopic liquid-gas domains. Although no single avalanche could be clearly resolved, this method allowed the first observation of microscopic RPM in an experimental system, showing the athermal character of the system. These are the first measurements to exhibit the athermal RFIM behavior in a non-magnetic system.L'influence du désordre sur les phénomènes critiques est jusqu'à présent essentiellement étudiée théoriquement. La motivation principale de ces études est de comprendre dans quelle mesure la différence de comportement entre les systèmes réels et les modèles théoriques idéaux résulte du désordre. Cette thèse aborde ce problème expérimentalement en étudiant la condensation de l'hélium 4 dans un aérogel de silice. En effet, ce système offre la possibilité de contrôler continûment l'influence du désordre. Plus précisément, nos résultats indiquent que ce phénomène est une réalisation expérimentale du modèle d'Ising avec champ aléatoire (Random Field Ising Model, RFIM) athermique étudié par Sethna et coll. (Phys. Rev. Lett., 70, 3347 (1993)). Pour cela, nous observons deux propriétés spécifiques à ce modèle, en accord avec les simulations numériques effectuées par Detcheverry et coll. sur un modèle de gaz sur réseau (Phys. Rev. E, 72, 051506 (2005)) : l'existence de points critiques contrôlés par le désordre ainsi que la mémoire du point de demi-tour (Return Point Memory, RPM). Les points critiques se manifestent par un changement de forme des isothermes d'adsorption mesurées par diffusion de la lumière. Nous avons mis au point une technique utilisant la grande sensibilité du speckle à la configuration microscopique locale des domaines liquide-gaz en vue de détecter les avalanches prédites par le modèle de Detcheverry et coll. Bien qu'aucune avalanche individuelle n'ait pu être isolée de façon claire, cette méthode a permis la première mise en évidence du RPM microscopique dans un système expérimental, justifiant ainsi le caractère athermique du système. Ces mesures sont les premières à observer le comportement du RFIM athermique dans un système non-magnétique

    Retrieving time-dependent Green's functions in optics with low-coherence interferometry

    Full text link
    We report on the passive measurement of time-dependent Green's functions in the optical frequency domain with low-coherence interferometry. Inspired by previous studies in acoustics and seismology, we show how the correlations of a broadband and incoherent wave-field can directly yield the Green's functions between scatterers of a complex medium. Both the ballistic and multiple scattering components of the Green's function are retrieved. This approach opens important perspectives for optical imaging and characterization in complex scattering media.Comment: 5 pages, 4 figure

    Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing and Scattering Pattern Analysis

    Get PDF
    We report on the experimental measurement of the backscattering matrix of a weakly scattering medium in optics, composed of a few dispersed gold nanobeads. The DORT method (Decomposition of the Time Reversal Operator) is applied to this matrix and we demonstrate selective and efficient focusing on individual scatterers, even through an aberrating layer. Moreover, we show that this approach provides the decomposition of the scattering pattern of a single nanoparticle. These results open important perspectives for optical imaging, characterization and selective excitation of nanoparticles.Comment: 10 page

    Condensation of helium in aerogels and athermal dynamics of the Random Field Ising Model

    Full text link
    High resolution measurements reveal that condensation isotherms of 4^4He in a silica aerogel become discontinuous below a critical temperature. We show that this behaviour does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the Random Field Ising Model. Our results evidence the key role of non-equilibrium effects in the phase transitions of disordered systems.Comment: 5 p + suppl. materia

    Tunable high-index photonic glasses

    Full text link
    Materials with extreme photonic properties such as maximum diffuse reflectance, high albedo, or tunable band gaps are essential in many current and future photonic devices and coatings. While photonic crystals, periodic anisotropic structures, are well established, their disordered counterparts, photonic glasses (PGs), are less understood despite their most interesting isotropic photonic properties. Here, we introduce a controlled high index model PG system. It is made of monodisperse spherical TiO2_2 colloids to exploit strongly resonant Mie scattering for optimal turbidity. We report spectrally resolved combined measurements of turbidity and light energy velocity from large monolithic crack-free samples. This material class reveals pronounced resonances enabled by the possibility to tune both the refractive index of the extremely low polydisperse constituents and their radius. All our results are rationalized by a model based on the energy coherent potential approximation, which is free of any fitting parameter. Surprisingly good quantitative agreement is found even at high index and elevated packing fraction. This class of PGs may be the key to optimized tunable photonic materials and also central to understand fundamental questions such as isotropic structural colors, random lasing or strong light localization in 3D.Comment: Main text: 8 pages, 4 figures; Supporting Information: 5 pages, 5 figure

    Scattering from controlled defects in woodpile photonic crystals

    Full text link
    Photonic crystals with a sufficiently high refractive index contrast display partial or full band gaps. However, imperfections in the metamaterial cause light scattering and extinction of the interfering propagating waves. Positive as well as negative defect volumes may contribute to this kind of optical perturbation. In this study, we fabricate and characterize three-dimensional woodpile photonic crystals, with a pseudo-bandgap for near-infrared optical wavelengths. By direct laser writing, we intentionally introduce random defects in the periodic structure. We show that we can model random defect scattering by considering the difference between the disordered and the regular structure. Our findings pave the way towards better control and understanding of the role of defects in photonic materials that will be crucial for their usability in potential applications.Comment: 8 pages, 7 figures + SI 5 pages, 6 figure

    Topological effects of a vorticity filament on the coherent backscattering cone

    Get PDF
    In this Letter, we report on the effects of a vorticity filament on the coherent backscattering cone. Using ultrasonic waves in a strongly reverberating cavity, we experimentally show that the discrete number of loops of acoustic paths around a pointlike vortex located at the center of the cavity drives the cancellation and the potential rebirth of the coherent backscattering enhancement. The vorticity filament behaves, then, as a topological anomaly for wave propagation that provides some new insight between reciprocity and weak localization
    corecore