35 research outputs found

    Phosphoryl Transfer Step in the C-terminal Src Kinase Controls Src Recognition

    Get PDF
    All members of the Src family of nonreceptor protein tyrosine kinases are phosphorylated and subsequently down-regulated by the C-terminal Src kinase, Csk. Although the recognition of Src protein substrates is essential for a diverse set of signaling events linked to cellular growth and differentiation, the factors controlling this critical protein-protein interaction are not well known. To understand how Csk recognizes Src, the chemical/physical events that modulate apparent substrate affinity and turnover were investigated. Src is phosphorylated in a biphasic manner in rapid quench flow experiments, suggesting that the phosphoryl transfer step is fast and highly favorable and does not limit overall turnover. As opposed to other kinase-substrate pairs, turnover is not limited by the physical release of ADP based on stopped-flow fluorescence and catalytic trapping experiments, suggesting that other steps control net phosphorylation. The Kd for Src is considerably larger than the Km based on single turnover kinetic and equilibrium sedimentation experiments. Taken together, the data are consistent with a mechanism whereby Csk achieves a low Km for the substrate Src, not by stabilizing protein-protein interactions but rather by facilitating a fast phosphoryl transfer step. In this manner, the phosphoryl transfer step functions as a chemical clamp facilitating substrate recognition

    Intra-Domain Cross-Talk Regulates Serine-Arginine Protein Kinase 1-Dependent Phosphorylation and Splicing Function of Transformer 2Ī²1

    Get PDF
    Transformer 2Ī²1 (Tra2Ī²1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2Ī²1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2Ī²1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2Ī²3), RS1 blocks phosphorylation of these serines in the full-length Tra2Ī²1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2Ī²1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2Ī²1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis

    Kinetic Mechanism of Human Histidine Triad Nucleotide Binding Protein 1

    Get PDF
    Human histidine triad nucleotide binding protein 1 (hHint1) is a member of a ubiquitous and ancient branch of the histidine triad protein superfamily. hHint1 is a homodimeric protein that catalyzes the hydrolysis of model substrates, phosphoramidate and acyl adenylate, with a high efficiency. Recently, catalytically inactive hHint1 has been identified as the cause of inherited peripheral neuropathy [Zimon, M., et al. (2012) Nat. Genet. 44, 1080-1083]. We have conducted the first detailed kinetic mechanistic studies of hHint1 and have found that the reaction mechanism is consistent with a double-displacement mechanism, in which the active site nucleophile His112 is first adenylylated by the substrate, followed by hydrolysis of the AMP-enzyme intermediate. A transient burst phase followed by a linear phase from the stopped-flow fluorescence assay indicated that enzyme adenylylation was faster than the subsequent intermediate hydrolysis and product release. Solvent viscosity experiments suggested that both chemical transformation and diffusion-sensitive events (product release or protein conformational change) limit the overall turnover. The catalytic trapping experiments and data simulation indicated that the true koff rate of the final product AMP is unlikely to control the overall kcat. Therefore, a protein conformational change associated with product release is likely rate-limiting. In addition, the rate of Hint1 adenylylation was found to be dependent on two residues with pKa values of 6.5 and 8, with the former pKa agreeing well with the nuclear magnetic resonance titration results for the pKa of the active site nucleophile His112. In comparison to the uncatalyzed rates, hHint1 was shown to enhance acyl-AMP and AMP phosphoramidate hydrolysis by 10(6)-10(8)-fold. Taken together, our analysis indicates that hHint1 catalyzes the hydrolysis of phosphoramidate and acyl adenylate with high efficiency, through a mechanism that relies on rapid adenylylation of the active residue, His112, while being partially rate-limited by intermediate hydrolysis and product release associated with a conformational change. Given the high degree of sequence homology of Hint proteins across all kingdoms of life, it is likely that their kinetic and catalytic mechanisms will be similar to those elucidated for hHint1

    C6 pyridinium ceramide influences alternative pre-mRNA splicing by inhibiting protein phosphatase-1

    Get PDF
    Alternative pre-mRNA processing is a central element of eukaryotic gene regulation. The cell frequently alters the use of alternative exons in response to physiological stimuli. Ceramides are lipid-signaling molecules composed of sphingosine and a fatty acid. Previously, water-insoluble ceramides were shown to change alternative splicing and decrease SR-protein phosphorylation by activating protein phosphatase-1 (PP1). To gain further mechanistical insight into ceramide-mediated alternative splicing, we analyzed the effect of C6 pyridinium ceramide (PyrCer) on alternative splice site selection. PyrCer is a water-soluble ceramide analog that is under investigation as a cancer drug. We found that PyrCer binds to the PP1 catalytic subunit and inhibits the dephosphorylation of several splicing regulatory proteins containing the evolutionarily conserved RVxF PP1-binding motif (including PSF/SFPQ, Tra2-beta1 and SF2/ASF). In contrast to natural ceramides, PyrCer promotes phosphorylation of splicing factors. Exons that are regulated by PyrCer have in common suboptimal splice sites, are unusually short and share two 4-nt motifs, GAAR and CAAG. They are dependent on PSF/SFPQ, whose phosphorylation is regulated by PyrCer. Our results indicate that lipids can influence pre-mRNA processing by regulating the phosphorylation status of specific regulatory factors, which is mediated by protein phosphatase activity

    Recruiting a Silent Partner for Activation of the Protein Kinase SRPK1

    No full text
    The SRPK family of protein kinases regulates mRNA splicing by phosphorylating an essential group of factors known as SR proteins, so named for a C-terminal domain enriched in arginineā€“serine dipeptide repeats (RS domains). SRPKs phosphorylate RS domains at numerous sites altering SR protein subcellular localization and splicing function. The RS domains in these splicing factors differ considerably in overall length and dipeptide layout. Despite their importance, little is known about how these diverse RS domains interact with SRPKs and regulate SR protein phosphorylation. We now show that sequences distal to the SRPK1 consensus region in the RS domain of the prototype SR protein SRSF1 are not passive as originally thought but rather play active roles in accelerating phosphorylation rates. Located in the C-terminal end of the RS domain, this nonconsensus region up-regulates rate-limiting ADP release through the nucleotide release factor, a structural module in SRPK1 composed of two noncontiguous sequence elements outside the kinase core domain. The data show that the RS domain in SRSF1 is multifunctional and that sequences once thought to be catalytically silent can be recruited to enhance the efficiency of SR protein phosphorylation
    corecore