60 research outputs found
Large Quasi-Tree Drawing: A Neighborhood Based Approach
International audienceIn this paper, we present an algorithm to lay out a particular class of graphs coming from real case studies: the quasi-tree graph class. Protein and internet mappings projects have shown the interest of devicing dedicated tools for visualizing such graphs. Our method addresses a challenging problem which consists in computing a layout of large graphs (up to hundred of thousands of nodes) that emphasizes their tree-like property in an efficient time. In order to validate our approach, we compare our results on real data to those obtained by well known algorithms
Winding Roads: Routing edges into bundles
International audienceVisualizing graphs containing many nodes and edges efficiently is quite challenging. Drawings of such graphs generally suffer from visual clutter induced by the large amount of edges and their crossings. Consequently, it is difficult to read the relationships between nodes and the high-level edge patterns that may exist in standard node- link diagram representations. Edge bundling techniques have been proposed to help solve this issue, which rely on high quality edge rerouting. In this paper, we introduce an intuitive edge bundling technique which efficiently reduces edge clutter in graphs drawings. Our method is based on the use of a grid built using the original graph to compute the edge rerouting. In comparison with previously proposed edge bundling methods, our technique improves both the level of clutter reduction and the computation performance. The second contribution of this paper is a GPU-based rendering method which helps users perceive bundles densities while preserving edge color
3D Edge Bundling for Geographical Data Visualization
International audienceVisualization of graphs containing many nodes and edges efficiently is quite challenging since representations generally suffer from visual clutter induced by the large amount of edge crossings and node-edge overlaps. That problem becomes even more important when nodes po- sitions are fixed, such as in geography were nodes posi- tions are set according to geographical coordinates. Edge bundling techniques can help to solve this issue by visu- ally merging edges along common routes but it can also help to reveal high-level edge patterns in the network and therefore to understand its overall organization. In this pa- per, we present a generalization of [18] to reduce the clut- ter in a 3D representation by routing edges into bundles as well as a GPU-based rendering method to emphasize bundles densities while preserving edge color. To visualize geographical networks in the context of the globe, we also provide a new technique allowing to bundle edges around and not across it
State of the Art of Visual Analytics for eXplainable Deep Learning
The use and creation of machineâlearningâbased solutions to solve problems or reduce their computational costs are becoming increasingly widespread in many domains. Deep Learning plays a large part in this growth. However, it has drawbacks such as a lack of explainability and behaving as a blackâbox model. During the last few years, Visual Analytics has provided several proposals to cope with these drawbacks, supporting the emerging eXplainable Deep Learning field. This survey aims to (i) systematically report the contributions of Visual Analytics for eXplainable Deep Learning; (ii) spot gaps and challenges; (iii) serve as an anthology of visual analytical solutions ready to be exploited and put into operation by the Deep Learning community (architects, trainers and end users) and (iv) prove the degree of maturity, ease of integration and results for specific domains. The survey concludes by identifying future research challenges and bridging activities that are helpful to strengthen the role of Visual Analytics as effective support for eXplainable Deep Learning and to foster the adoption of Visual Analytics solutions in the eXplainable Deep Learning community. An interactive explorable version of this survey is available online at https://awareâdiagâsapienza.github.io/VA4XDL
ImPrEd: An Improved Force-Directed Algorithm that Prevents Nodes from Crossing Edges
International audiencePrEd is a force-directed algorithm that improves the existing layout of a graph while preserving its edge crossing properties. The algorithm has a number of applications including: improving the layouts of planar graph drawing algorithms, interacting with a graph layout, and drawing Euler-like diagrams. The algorithm ensures that nodes do not cross edges during its execution. However, PrEd can be computationally expensive and overly-restrictive in terms of node movement. In this paper, we introduce ImPrEd: an improved version of PrEd that overcomes some of its limitations and widens its range of applicability. ImPrEd also adds features such as ïŹexible or crossable edges, allowing for greater control over the output. Flexible edges, in particular, can improve the distribution of graph elements and the angular resolution of the input graph. They can also be used to generate Euler diagrams with smooth boundaries. As ïŹexible edges increase data set size, we experience an execution/drawing quality trade off. However, when ïŹexible edges are not used, ImPrEd proves to be consistently faster than PrEd
Metabolic network visualization eliminating node redundance and preserving metabolic pathways
<p>Abstract</p> <p>Background</p> <p>The tools that are available to draw and to manipulate the representations of metabolism are usually restricted to metabolic pathways. This limitation becomes problematic when studying processes that span several pathways. The various attempts that have been made to draw genome-scale metabolic networks are confronted with two shortcomings: 1- they do not use contextual information which leads to dense, hard to interpret drawings, 2- they impose to fit to very constrained standards, which implies, in particular, duplicating nodes making topological analysis considerably more difficult.</p> <p>Results</p> <p>We propose a method, called MetaViz, which enables to draw a genome-scale metabolic network and that also takes into account its structuration into pathways. This method consists in two steps: a clustering step which addresses the pathway overlapping problem and a drawing step which consists in drawing the clustered graph and each cluster.</p> <p>Conclusion</p> <p>The method we propose is original and addresses new drawing issues arising from the no-duplication constraint. We do not propose a single drawing but rather several alternative ways of presenting metabolism depending on the pathway on which one wishes to focus. We believe that this provides a valuable tool to explore the pathway structure of metabolism.</p
TULIP 4
Tulip is an information visualization framework dedicated to the analysis and visualization of relational data. Based on more than 15 years of research and development, Tulip is built on a suite of tools and techniques , that can be used to address a large variety of domain-specific problems. With Tulip, we aim to provide Python and/or C++ developers a complete library, supporting the design of interactive information visualization applications for relational data, that can be customized to address a wide range of visualization problems. In its current iteration, Tulip enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations. This development pipeline makes the framework efficient for creating research prototypes as well as developing end-user applications. The recent addition of a complete Python programming layer wraps up Tulip as an ideal tool for fast prototyping and treatment automation, allowing to focus on problem solving, and as a great system for teaching purposes at all education levels
Batch kernel SOM and related Laplacian methods for social network analysis
Large graphs are natural mathematical models for describing the structure of
the data in a wide variety of fields, such as web mining, social networks,
information retrieval, biological networks, etc. For all these applications,
automatic tools are required to get a synthetic view of the graph and to reach
a good understanding of the underlying problem. In particular, discovering
groups of tightly connected vertices and understanding the relations between
those groups is very important in practice. This paper shows how a kernel
version of the batch Self Organizing Map can be used to achieve these goals via
kernels derived from the Laplacian matrix of the graph, especially when it is
used in conjunction with more classical methods based on the spectral analysis
of the graph. The proposed method is used to explore the structure of a
medieval social network modeled through a weighted graph that has been directly
built from a large corpus of agrarian contracts
The Tulip 3 Framework: A Scalable Software Library for Information Visualization Applications Based on Relational Data
Tulip is an information visualization framework dedicated to the analysis and visualization of relational data. Based on a decade of research and development of this framework, we present the architecture, consisting of a suite of tools and techniques, that can be used to address a large variety of domain-specific problems. With Tulip, we aim to provide the developer with a complete library, supporting the design of interactive information visualization applications for relational data that can be tailored to the problems he or she is addressing. The current framework enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations. The software model facilitates the reuse of components and allows the developers to focus on programming their application. This development pipeline makes the framework efficient for research prototyping as well as the development of end-user applications
- âŠ