205 research outputs found

    Involving patients and families in a social robot study

    Get PDF
    Innovative research in care practice for older people can benefit from the active involvement of patient and family partners. Involvement may begin with identifying priorities, then move to formulate research questions and to plan the research methods, to data collection, and finally to analysis and knowledge dissemination. However, in the field of dementia care, actively engaging patients and families in co-research is a novel practice that needs exploration. This paper describes the experiences and perspectives of two patient researchers and three family researchers, along with four clinicians (two physicians, a nurse, and an occupational therapist) within a social robot project in dementia care. Meeting notes, team reflection focus groups, follow–up interviews, and a research journal were used to document the research process. The results are presented in three themes: (a) identify challenges and lessons learned, (b) co-inquire enriched learning, (c) co-produce knowledge for care improvement. All team members agreed that an inclusive environment was important to facilitate meaningful partnerships for undertaking research together. Trust and respect were seen as vital for a rewarding and productive experience in the co-inquiry journey. Some of the challenges to sustaining participant engagement were competing priorities and a risk of tokenism. This article provides a rich description as well as practical details of the research experiences among team members. We offer examples of lessons learned and practical tips to help others increase the engagement of patients and families in research. Experience Framework This article is associated with the Innovation & Technology lens of The Beryl Institute Experience Framework. (http://bit.ly/ExperienceFramework) Access other PXJ articles related to this lens. Access other resources related to this len

    Mechanisms of iron uptake from ferric phosphate nanoparticles in human intestinal Caco-2 cells

    Get PDF
    Food fortification programs to reduce iron deficiency anemia require bioavailable forms of iron that do not cause adverse organoleptic effects. Rodent studies show that nano-sized ferric phosphate (NP-FePO4) is as bioavailable as ferrous sulfate, but there is controversy over the mechanism of absorption. We undertook in vitro studies to examine this using a Caco-2 cell model and simulated gastrointestinal (GI) digestion. Supernatant iron concentrations increased inversely with pH, and iron uptake into Caco-2 cells was 2–3 fold higher when NP-FePO4 was digested at pH 1 compared to pH 2. The size and distribution of NP-FePO4 particles during GI digestion was examined using transmission electron microscopy. The d50 of the particle distribution was 413 nm. Using disc centrifugal sedimentation, a high degree of agglomeration in NP-FePO4 following simulated GI digestion was observed, with only 20% of the particles ≤1000 nm. In Caco-2 cells, divalent metal transporter-1 (DMT1) and endocytosis inhibitors demonstrated that NP-FePO4 was mainly absorbed via DMT1. Small particles may be absorbed by clathrin-mediated endocytosis and micropinocytosis. These findings should be considered when assessing the potential of iron nanoparticles for food fortificatio

    Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations

    Get PDF
    Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-γc-/- mice following a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously generated T-cells in Rag2-/-γc-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases

    The Benefits of and Barriers to Using Social Robot PARO in Care Settings: A Scoping Review

    Get PDF
    Background Given the complexity of providing dementia care in hospitals, integrating technology into practice is a high challenge and an important opportunity. Although there are a growing demand and interest in using social robots in a variety of care settings to support dementia care, little is known about the impacts of the robotics and their application in care settings, i.e., what worked, in which situations, and how.   Methods Scientific databases and Google Scholar were searched to identify publications published since 2000. The inclusion criteria consisted of older people with dementia, care setting, and social robot PARO.   Results A total of 29 papers were included in the review. Content analysis identified 3 key benefits of and 3 barriers to the use of PARO. Main benefits include: reducing negative emotion and behavioral symptoms, improving social engagement, and promoting positive mood and quality of care experience. Key barriers are: cost and workload, infection concerns, and stigma and ethical issues. This review reveals 3 research gaps: (a) the users’ needs and experiences remain unexplored, (b) few studies investigate the process of how to use the robot effectively to meet clinical needs, and (c) theory should be used to guide implementation.   Conclusions Most interventions conducted have been primarily researcher-focused. Future research should pay more attention to the clinical needs of the patient population and develop strategies to overcome barriers to the adoption of PARO in order to maximize patient benefits

    The Benefits of and Barriers to Using Social Robot PARO in Care Settings: A Scoping Review

    Get PDF
    Background Given the complexity of providing dementia care in hospitals, integrating technology into practice is a high challenge and an important opportunity. Although there are a growing demand and interest in using social robots in a variety of care settings to support dementia care, little is known about the impacts of the robotics and their application in care settings, i.e., what worked, in which situations, and how.   Methods Scientific databases and Google Scholar were searched to identify publications published since 2000. The inclusion criteria consisted of older people with dementia, care setting, and social robot PARO.   Results A total of 29 papers were included in the review. Content analysis identified 3 key benefits of and 3 barriers to the use of PARO. Main benefits include: reducing negative emotion and behavioral symptoms, improving social engagement, and promoting positive mood and quality of care experience. Key barriers are: cost and workload, infection concerns, and stigma and ethical issues. This review reveals 3 research gaps: (a) the users’ needs and experiences remain unexplored, (b) few studies investigate the process of how to use the robot effectively to meet clinical needs, and (c) theory should be used to guide implementation.   Conclusions Most interventions conducted have been primarily researcher-focused. Future research should pay more attention to the clinical needs of the patient population and develop strategies to overcome barriers to the adoption of PARO in order to maximize patient benefits

    Nature of the current-induced insulator-to-metal transition in Ca2_2RuO4_4 as revealed by transport-ARPES

    Full text link
    The Mott insulator Ca2_2RuO4_4 exhibits a rare insulator-to-metal transition (IMT) induced by DC current. While structural changes associated with this transition have been tracked by neutron diffraction, Raman scattering, and x-ray spectroscopy, work on elucidating the response of the electronic degrees of freedom is still in progress. Here we unveil the current-induced modifications of the electronic states of Ca2_2RuO4_4 by employing angle-resolved photoemission spectroscopy (ARPES) in conjunction with four-probe transport. Two main effects emerge: a clear reduction of the Mott gap and a modification in the dispersion of the Ru-bands. The changes in dispersion occur exclusively along the XMXM high-symmetry direction, parallel to the bb-axis where the greatest in-plane lattice change occurs. These experimental observations are reflected in dynamical mean-field theory (DMFT) calculations simulated exclusively from the current-induced lattice constants, indicating a current driven structural transition as the primary mechanism of the IMT. Furthermore, we demonstrate this phase is distinct from the high-temperature zero-current metallic phase. Our results provide insight into the elusive nature of the current-induced IMT of Ca2_2RuO4_4 and advance the challenging, yet powerful, technique of transport-ARPES.Comment: 8 pages, 4 figure
    corecore