2,433 research outputs found

    Three-dimensional fast electron transport for ignition-scale inertial fusion capsules

    Get PDF
    Three-dimensional hybrid PIC simulations are presented to study electron energy transport and deposition in a full-scale fast ignition configuration. Multi-prong core heating close to ignition is found when a few GA, few PW beam is injected. Resistive beam filamentation in the corona seeds the 3D current pattern that penetrates the core. Ohmic heating is important in the low-density corona, while classical Coulomb deposition heats the core. Here highest energy densities (few Tbar at 10 keV) are observed at densities above 200 g/cc. Energy coupling to the core ranges from 20 to 30%; it is enhanced by beam collimation and decreases when raising the beam particle energy from 1.5 to 5.5 MeV.Comment: 5 pages, 5 figure

    Probing the hydrogen melting line at high pressures by dynamic compression

    Get PDF
    We investigate the capabilities of dynamic compression by intense heavy ion beams to yield information about the high pressure phases of hydrogen. Employing ab initio simulations and experimental data, a new wide range equation of state for hydrogen is constructed. The results show that the melting line up to its maximum as well as the transition from molecular fluids to fully ionized plasmas can be tested with the beam parameters soon to be available. We demonstrate that x-ray scattering can distinguish between phases and dissociation states

    Microstructure and Residual Stress Evolution of Laser Powder Bed Fused Inconel 718 under Heat Treatments

    Get PDF
    The current work aimed to study the influence of various heat treatments on the microstructure, hardness, and residual stresses of Inconel 718 processed by laser powder bed fusion process. The reduction in residual stresses is crucial to avoid the deformation of the component during its removal from the building platform. Among the different heat treatments, 800 °C kept almost unaltered the original microstructure, reducing the residual stresses. Heat treatments at 900, 980, and 1065 °C gradually triggered the melt pool and dendritic structures dissolution, drastically reducing the residual stresses. Heat treatments at 900 and 980 °C involved the formation of δ phases, whereas 1065 °C generated carbides. These heat treatments were also performed on components with narrow internal channels revealing that heat treatments up to 900 °C did not trigger sintering mechanisms allowing to remove the powder from the inner channels

    Lattice Boltzmann study on Kelvin-Helmholtz instability: the roles of velocity and density gradients

    Full text link
    A two-dimensional lattice Boltzmann model with 19 discrete velocities for compressible Euler equations is proposed (D2V19-LBM). The fifth-order Weighted Essentially Non-Oscillatory (5th-WENO) finite difference scheme is employed to calculate the convection term of the lattice Boltzmann equation. The validity of the model is verified by comparing simulation results of the Sod shock tube with its corresponding analytical solutions. The velocity and density gradient effects on the Kelvin-Helmholtz instability (KHI) are investigated using the proposed model. Sharp density contours are obtained in our simulations. It is found that, the linear growth rate γ\gamma for the KHI decreases with increasing the width of velocity transition layer Dv{D_{v}} but increases with increasing the width of density transition layer Dρ{D_{\rho}}. After the initial transient period and before the vortex has been well formed, the linear growth rates, γv\gamma_v and γρ\gamma_{\rho}, vary with Dv{D_{v}} and Dρ{D_{\rho}} approximately in the following way, lnγv=abDv\ln\gamma_{v}=a-bD_{v} and γρ=c+elnDρ(Dρ<DρE)\gamma_{\rho}=c+e\ln D_{\rho} ({D_{\rho}}<{D_{\rho}^{E}}), where aa, bb, cc and ee are fitting parameters and DρE{D_{\rho}^{E}} is the effective interaction width of density transition layer. When Dρ>DρE{D_{\rho}}>{D_{\rho}^{E}} the linear growth rate γρ\gamma_{\rho} does not vary significantly any more. One can use the hybrid effects of velocity and density transition layers to stabilize the KHI. Our numerical simulation results are in general agreement with the analytical results [L. F. Wang, \emph{et al.}, Phys. Plasma \textbf{17}, 042103 (2010)].Comment: Accepted for publication in PR

    Fasi finali e riutilizzo di età storica nel Nuraghe Cuccurada di Mogoro (OR)

    Get PDF
    Nel sito archeologico in località Cuccurada, in territorio comunale di Mogoro, le ricerche hanno evidenziato un insediamento pluristratificato, con fasi di occupazione del Neolitico recente (cultura di Ozieri), dell’Eneolitico (cultura di Monte Claro) e delle Età del Bronzo e del Ferro, con un riutilizzo dell’area in epoca romana e medievale. Il complesso è già abbastanza noto in letteratura, ma ancora parzialmente inedito per quanto riguarda i materiali e i dati di scavo. Nel presente contributo si vuole presentare nel dettaglio le diverse fasi di occupazione del sito, soprattutto in relazione ai momenti finali della frequentazione protostorica (Bronzo Finale/I Ferro) ed alla rioccupazione del complesso in età romana e medievale.In the archaeological site of Cuccurada, in the territory of Mogoro, the researches have evidenced a pluristratified settlement, with phases of occupation of the recent Neolithic (culture of Ozieri), of the Eneolithic age (culture of Monte Claro) and of the Bronze and Iron Ages, with a re-use of the area in roman and medieval period. The complex is already enough famous in literature, but still partially unknown regarding the materials and the excavation data. In the present work we want to present in detail the different occupation phases of the site, especially in relationship to the final moments of the proto-historic frequentation (Final Bronze/I Iron Age) and to the last re-use of the complex in Roman and medieval age

    Integrated sources of entangled photons at telecom wavelength in femtosecond-laser-written circuits

    Get PDF
    Photon entanglement is an important state of light that is at the basis of many protocols in photonic quantum technologies, from quantum computing, to simulation and sensing. The capability to generate entangled photons in integrated waveguide sources is particularly advantageous due to the enhanced stability and more efficient light-crystal interaction. Here we realize an integrated optical source of entangled degenerate photons at telecom wavelength, based on the hybrid interfacing of photonic circuits in different materials, all inscribed by femtosecond laser pulses. We show that our source, based on spontaneous parametric down-conversion, gives access to different classes of output states, allowing to switch from path-entangled to polarization-entangled states with net visibilities above 0.92 for all selected combinations of integrated devices

    Modelling Analytically the Dynamic Response of Thermo-Optic Phase Shifters

    Get PDF
    Thermo-optic phase shifters are widely adopted to achieve dynamical reconfiguration of integrated waveguide circuits [1], with applications encompassing diverse fields, ranging from free-space beam steering and shaping [2] to quantum information experiments [3]
    corecore