5 research outputs found

    A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line

    No full text
    Abstract Background HIV-1 uses cellular co-factors for virion formation and release. The virus is able to incorporate into the viral particles host cellular proteins, such as tetraspanins which could serve to facilitate HIV-1 egress. Here, we investigated the implication of several tetraspanins on HIV-1 formation and release in chronically infected T-lymphoblastic cells, a model that permits the study of the late steps of HIV-1 replication. Results Our data revealed that HIV-1 Gag and Env structural proteins co-localized with tetraspanins in the form of clusters. Co-immunoprecipitation experiments showed that Gag proteins interact, directly or indirectly, with CD81, and less with CD82, in tetraspanin-enriched microdomains composed of CD81/CD82/CD63. In addition, when HIV-1 producing cells were treated with anti-CD81 antibodies, or upon CD81 silencing by RNA interference, HIV-1 release was significantly impaired, and its infectivity was modulated. Finally, CD81 downregulation resulted in Gag redistribution at the cell surface. Conclusion Our findings not only extend the notion that HIV-1 assembly can occur on tetraspanin-enriched microdomains in T cells, but also highlight a critical role for the tetraspanin CD81 on the late steps of HIV replication.</p

    : PrPC AND T CELL DIFFERENTIATION

    No full text
    E.J.-M, V.A.-A. and C.A.-G. contributed equally to this work.International audienceCellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein whose roles are still widely discussed, particularly in the field of immunology. Using TgA20- and Tg33-transgenic mice overexpressing PrP(C), we investigated the consequences of this overexpression on T cell development. In both models, overexpression of PrP(C) induces strong alterations at different steps of T cell maturation. On TgA20 mice, we observed that these alterations are cell autonomous and lead to a decrease of alphabeta T cells and a concomitant increase of gammadelta T cell numbers. PrP(C) has been shown to bind and chelate copper and, interestingly, under a copper supplementation diet, TgA20 mice presented a partial restoration of the alphabeta T cell development, suggesting that PrP(C) overexpression, by chelating copper, generates an antioxidant context differentially impacting on alphabeta and gammadelta T cell lineage
    corecore