14 research outputs found

    Alterations in Postprandial Hepatic Glycogen Metabolism in Type 2 Diabetes

    Get PDF
    Decreased skeletal muscle glucose disposal and increased endogenous glucose production (EGP) contribute to postprandial hyperglycemia in type 2 diabetes, but the contribution of hepatic glycogen metabolism remains uncertain. Hepatic glycogen metabolism and EGP were monitored in type 2 diabetic patients and nondiabetic volunteer control subjects (CON) after mixed meal ingestion and during hyperglycemic-hyperinsulinemic-somatostatin clamps applying 13C nuclear magnetic resonance spectroscopy (NMRS) and variable infusion dual-tracer technique. Hepatocellular lipid (HCL) content was quantified by 1H NMRS. Before dinner, hepatic glycogen was lower in type 2 diabetic patients (227 ± 6 vs. CON: 275 ± 10 mmol/l liver, P < 0.001). After meal ingestion, net synthetic rates were 0.76 ± 0.16 (type 2 diabetic patients) and 1.36 ± 0.15 mg · kg−1 · min−1 (CON, P < 0.02), resulting in peak concentrations of 283 ± 15 and 360 ± 11 mmol/l liver. Postprandial rates of EGP were ∌0.3 mg · kg−1 · min−1 (30–170 min; P < 0.05 vs. CON) higher in type 2 diabetic patients. Under clamp conditions, type 2 diabetic patients featured ∌54% lower (P < 0.03) net hepatic glycogen synthesis and ∌0.5 mg · kg−1 · min−1 higher (P < 0.02) EGP. Hepatic glucose storage negatively correlated with HCL content (R = −0.602, P < 0.05). Type 2 diabetic patients exhibit 1) reduction of postprandial hepatic glycogen synthesis, 2) temporarily impaired suppression of EGP, and 3) no normalization of these defects by controlled hyperglycemic hyperinsulinemia. Thus, impaired insulin sensitivity and/or chronic glucolipotoxicity in addition to the effects of an altered insulin-to-glucagon ratio or increased free fatty acids accounts for defective hepatic glycogen metabolism in type 2 diabetic patients

    Lower Fasting Muscle Mitochondrial Activity Relates to Hepatic Steatosis in Humans

    Get PDF
    OBJECTIVE Muscle insulin resistance has been implicated in the development of steatosis and dyslipidemia by changing the partitioning of postprandial substrate fluxes. Also, insulin resistance may be due to reduced mitochondrial function. We examined the association between mitochondrial activity, insulin sensitivity, and steatosis in a larger human population. RESEARCH DESIGN AND METHODS We analyzed muscle mitochondrial activity from ATP synthase flux (fATP) and ectopic lipids by multinuclei magnetic resonance spectroscopy from 113 volunteers with and without diabetes. Insulin sensitivity was assessed from M values using euglycemic-hyperinsulinemic clamps and/or from oral glucose insulin sensitivity (OGIS) using oral glucose tolerance tests. RESULTS Muscle fATP correlated negatively with hepatic lipid content and HbA1c. After model adjustment for study effects and other confounders, fATP showed a strong negative correlation with hepatic lipid content and a positive correlation with insulin sensitivity and fasting C-peptide. The negative correlation of muscle fATP with age, HbA1c, and plasma free fatty acids was weakened after adjustment. Body mass, muscle lipid contents, plasma lipoproteins, and triglycerides did not associate with fATP. CONCLUSIONS The association of impaired muscle mitochondrial activity with hepatic steatosis supports the concept of a close link between altered muscle and liver energy metabolism as early abnormalities promoting insulin resistance

    Muscle Mitochondrial ATP Synthesis and Glucose Transport/Phosphorylation in Type 2 Diabetes

    Get PDF
    BACKGROUND: Muscular insulin resistance is frequently characterized by blunted increases in glucose-6-phosphate (G-6-P) reflecting impaired glucose transport/phosphorylation. These abnormalities likely relate to excessive intramyocellular lipids and mitochondrial dysfunction. We hypothesized that alterations in insulin action and mitochondrial function should be present even in nonobese patients with well-controlled type 2 diabetes mellitus (T2DM). METHODS AND FINDINGS: We measured G-6-P, ATP synthetic flux (i.e., synthesis) and lipid contents of skeletal muscle with (31)P/(1)H magnetic resonance spectroscopy in ten patients with T2DM and in two control groups: ten sex-, age-, and body mass-matched elderly people; and 11 younger healthy individuals. Although insulin sensitivity was lower in patients with T2DM, muscle lipid contents were comparable and hyperinsulinemia increased G-6-P by 50% (95% confidence interval [CI] 39%–99%) in all groups. Patients with diabetes had 27% lower fasting ATP synthetic flux compared to younger controls (p = 0.031). Insulin stimulation increased ATP synthetic flux only in controls (younger: 26%, 95% CI 13%–42%; older: 11%, 95% CI 2%–25%), but failed to increase even during hyperglycemic hyperinsulinemia in patients with T2DM. Fasting free fatty acids and waist-to-hip ratios explained 44% of basal ATP synthetic flux. Insulin sensitivity explained 30% of insulin-stimulated ATP synthetic flux. CONCLUSIONS: Patients with well-controlled T2DM feature slightly lower flux through muscle ATP synthesis, which occurs independently of glucose transport /phosphorylation and lipid deposition but is determined by lipid availability and insulin sensitivity. Furthermore, the reduction in insulin-stimulated glucose disposal despite normal glucose transport/phosphorylation suggests further abnormalities mainly in glycogen synthesis in these patients

    A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells.

    No full text
    The immunomodulatory potential of multipotent mesenchymal stromal cells (MSC) provides a basis for current and future regenerative therapies. In this study, we established an approach that allows to address the effects of pro-inflammatory stimulation and co-culture with MSC on different specific leukocyte subpopulations. Equine peripheral blood leukocyte recovery was optimized to preserve all leukocyte subpopulations and leukocyte activation regimes were evaluated. Allogeneic labeled equine adipose-derived MSC were then subjected to direct co-culture with either non-stimulated, concanavalin A (ConA)-activated or phosphate 12-myristate 13-acetate and ionomycin (PMA/I)-activated leukocytes. Subsequently, production of the cytokines interferon-γ (IFN- γ), interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) and presence of FoxP3 were determined in specific cell populations using multicolor flow cytometry. Prostaglandin E2 (PGE2) was measured in the supernatants. ConA-stimulation induced mild activation of leukocytes, whereas PMA/I-stimulation led to strong activation. In T cells, PMA/I promoted production of all cytokines, with no distinct suppressive effects of MSC. However, increased numbers of CD25/FoxP3-positive cells indicated that MSC supported regulatory T cell differentiation in PMA/I-activated leukocyte cultures. MSC also reduced numbers of cytokine-producing B cells and granulocytes, mostly irrespective of preceding leukocyte activation, and reversed the stimulatory effect of ConA on IFN-γ production in monocytes. Illustrating the possible suppressive mechanisms, higher numbers of MSC produced IL-10 when co-cultured with non-stimulated or ConA-activated leukocytes. This was not observed in co-culture with PMA/I-activated leukocytes. However, PGE2 concentration in the supernatant was highest in the co-culture with PMA/I-activated leukocytes, suggesting that PGE2 could still mediate modulatory effects in strongly inflammatory environment. These context- and cell type-specific modulatory effects observed give insight into the interactions between MSC and different types of immune cells and highlight the roles of IL-10 and PGE2 in MSC-mediated immunomodulation. The approach presented could provide a basis for further functional MSC characterization and the development of potency assays

    Glucose uptake saturation explains glucose kinetics profiles measured by different tests

    No full text
    It is known that for a given insulin level glucose clearance depends on glucose concentration. However, a quantitative representation of the concomitant effects of hyperinsulinemia and hyperglycemia on glucose clearance, necessary to describe heterogeneous tests such as euglycemic and hyperglycemic clamps and oral tests, is lacking. Data from five studies (123 subjects) using a glucose tracer and including all the above tests in normal and diabetic subjects were collected. A mathematical model was developed in which glucose utilization was represented as a Michaelis-Menten function of glucose with constant Km and insulin-controlled Vmax, consistently with the basic notions of glucose transport. Individual values for the model parameters were estimated using a population approach. Tracer data were accurately fitted in all tests. The estimated Km was 3.88 (2.83–5.32) mmol/l [median (interquartile range)]. Median model-derived glucose clearance at 600 pmol/l insulin was reduced from 246 to 158 ml·min-1·m-2 when glucose was raised from 5 to 10 mmol/l. The model reproduced the characteristic lack of increase in glucose clearance when moderate hyperinsulinemia was accompanied by hyperglycemia. In all tests, insulin sensitivity was inversely correlated with BMI, as expected (R2 = 0.234, P = 0.0001). In conclusion, glucose clearance in euglycemic and hyperglycemic clamps and oral tests can be described with a unifying model, consistent with the notions of glucose transport and able to reproduce the suppression of glucose clearance due to hyperglycemia observed in previous studies. The model may be important for the design of reliable glucose homeostasis simulators

    Glucose Metabolism and Intracellular Lipids of Skeletal Muscle and Liver

    No full text
    <p>Whole-body glucose disposal (A) and ΔEGP (B) during euglycemic–hyperinsulinemic clamp (<i>n</i> = 31). IMCL in skeletal muscle (<i>n</i> = 31) (C) and liver (<i>n</i> = 29) (HCL) (D). Patients with T2DM (black columns), CONo (grey columns), and CONy (white columns). All results are means <i>±</i> SD. ¶ <i>p</i> < 0.001 T2DM versus CONy; † <i>p</i> < 0.01 CONo versus T2DM and CONy; * <i>p</i> < 0.05 T2DM versus CONy; § <i>p</i> < 0.001 T2DM versus controls.</p
    corecore