33 research outputs found

    Plastic dilation rate characteristic of concrete confined with steel tube

    Get PDF
    The use of external confining devices to confine concrete has become widely used. One of the purposes is to gain additional concrete strength and ductility. Although there are many types of external confining devices, in this paper, the attention is limited to the use ofthe steel tube as anexternal confining device. One of the main objectives ofthis research is to study the plastic dilation rate behavior of concrete-filled-steel-tube (CFST) columns. The experimental data for the plastic dilation rate is extracted, and compared with the authors concrete plasticity model. In the authors’ previous research, the calibration of the plastic dilation rate model was based on confined concrete tested under both active and passive confinement using FRP wraps. Since the behavior of the steel tube and the FRP materials are different, the author’s plastic dilation rate model needs to be re-evaluated for CFST columns. Comparisons of the extracted experimental plastic dilation rates with the model prediction for CFST specimens with normal strength concrete show good agreement and requires no adjustment in the formulation. However, for a specimen with 80 MPa concrete, the proposed formulation showsslightly lowerplastic dilation rates.More experimental data for CFST using high strength concretes is required for further investigation. For the sake of completeness, the overall response of two CFST specimensisalso evaluated using anin-house three-dimensional non-linear finite element analysis (3D-NLFEA) using the author’s proposed plasticity formulation for confined concrete

    Stedina ta’ tfajjel

    Get PDF
    Ġabra ta’ poeżiji u proża li tinkludi: “Fruili” Mejju 1976 ta’ Jane Cortis – Lilek Ranċisa! ta’ Wallace Ph. Gulia – Papà ġdid ta’ Ġużè Diacono – Priżma ta’ Victor Apap – Leħen is-sewwa ta’ A. M. – Dik ix-xagħra! ta’ Emmanwel F. Attard – Bewsa ta’ Mario F. Bezzina – Stedina ta’ tfajjel ta’ Albert M. Cassola.peer-reviewe

    Daħla

    Get PDF
    Ġabra ta’ poeżiji u proża li tinkludi: Iva le ta’ Charles Coleiro – Dak li Alla jrid għalih ta’ G. Z. A. – L-univers ta’ P. P. Theuma – Għaddej iż-żmien ta’ Wallace Ph. Gulia – Dawl ċkejken ta’ Dun Frans Camilleri – Meta l-qalb ma tweġibx ta’ A. Cremona – Ħerba ta’ Oliver Friggieri – Is-siġar ta’ Albert M. Cassola – Lill-bandiera Maltija ta’ Mario Agius – Daħla ta’ Emanuele Attard.peer-reviewe

    The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes

    Get PDF
    A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities

    Vitamin D status is inversely associated with markers of risk for type 2 diabetes: A population based study in Victoria, Australia

    Get PDF
    A growing body of evidence suggests a protective role of Vitamin D on the risk of type 2 diabetes mellitus (T2DM). We investigated this relationship in a population sample from one Australian state. The data of 3,393 Australian adults aged 18±75 years who participated in the 2009±2010 Victorian Health Monitor survey was analyzed. Socio-demographic information, biomedical variables, and dietary intakes were collected and fasting blood samples were analyzed for 25, hydroxycholecalciferol (25OHD), HbA1c, fasting plasma glucose (FPG), and lipid profiles. Logistic regression analyses were used to evaluate the association between tertiles of serum 25OHD and categories of FPG (<5.6 mmol/L vs. 5.6±6.9 mmol/L), and HbA1c (<5.7% vs. 5.7±6.4%). After adjusting for social, dietary, biomedical and metabolic syndrome (MetS) components (waist circumference, HDL cholesterol, triglycerides, and blood pressure), every 10 nmol/L increment in serum 25OHD significantly reduced the adjusted odds ratio (AOR) of a higher FPG [AOR 0.91, (0.86, 0.97); p = 0.002] and a higher HbA1c [AOR 0.94, (0.90, 0.98); p = 0.009]. Analysis by tertiles of 25OHD indicated that after adjustment for socio-demographic and dietary variables, those with high 25OHD (65±204 nmol/L) had reduced odds of a higher FPG [AOR 0.60, (0.43, 0.83); p = 0.008] as well as higher HbA1c [AOR 0.67, (0.53, 0.85); p = 0.005] compared to the lowest 25OHD (10±44 nmol/L) tertile. On final adjustment for other components of MetS, those in the highest tertile of 25OHD had significantly reduced odds of higher FPG [AOR 0.61, (0.44, 0.84); p = 0.011] and of higher HbA1c [AOR 0.74, (0.58, 0.93); p = 0.041] vs. low 25OHD tertile. Overall, the data support a direct, protective effect of higher 25OHD on FPG and HbA1c; two criteria for assessment of risk of T2DM

    Plastic dilation rate characteristic of concrete confined with steel tube

    No full text
    The use of external confining devices to confine concrete has become widely used. One of the purposes is to gain additional concrete strength and ductility. Although there are many types of external confining devices, in this paper, the attention is limited to the use ofthe steel tube as anexternal confining device. One of the main objectives ofthis research is to study the plastic dilation rate behavior of concrete-filled-steel-tube (CFST) columns. The experimental data for the plastic dilation rate is extracted, and compared with the authors concrete plasticity model. In the authors’ previous research, the calibration of the plastic dilation rate model was based on confined concrete tested under both active and passive confinement using FRP wraps. Since the behavior of the steel tube and the FRP materials are different, the author’s plastic dilation rate model needs to be re-evaluated for CFST columns. Comparisons of the extracted experimental plastic dilation rates with the model prediction for CFST specimens with normal strength concrete show good agreement and requires no adjustment in the formulation. However, for a specimen with 80 MPa concrete, the proposed formulation showsslightly lowerplastic dilation rates.More experimental data for CFST using high strength concretes is required for further investigation. For the sake of completeness, the overall response of two CFST specimensisalso evaluated using anin-house three-dimensional non-linear finite element analysis (3D-NLFEA) using the author’s proposed plasticity formulation for confined concrete

    Refined plasticity model for concrete stress-strain relationship part I: prediction of peak stress and residual stress

    No full text
    A refined plasticity model for concrete stress-strain relationships is proposed. The proposed failure surface has the ability to evolve its form based on empirical formulation in which being extracted from the experimental results via the frictional driver parameter (α). Two main features are highlighted in this paper such as the peak stress prediction and residual stress prediction of the proposed model. In this paper the comparison of proposed models with experimental results weighted on uniaxial-triaxial compression in axial direction. In the next part of the research a non-associative flow rule in which has an inclusion of size effect to be applied in the constitutive driver is proposed and experimental comparison in both axial and lateral direction is discussed

    Finite element analysis of the Circular Double Skin Tubular Concrete (DSTC) under concentric loading

    No full text
    This paper presents a numerical investigation on the behaviour of circular double-skin tubular concrete (DSTC) under concentric loading. The numerical analysis is carried out using a three-dimensional non-linear finite element package (3D-NLFEA). In DSTC specimen, the concrete is enclosed by FRP wraps at the outer tube and circular hollow steel (CHS) at the inner tube. The concrete constitutive model is based on the authors developed plasticity-fracture model which uses a non-constant plastic dilation rate for modelling concrete dilation under compression. The nonlinear buckling analysis is included in the analysis. Random material imperfection is used to induced asymmetric failure pattern. Mohr-Coulomb friction model is used to simulate the contact behaviour between concrete and CHS elements. The results from the FEA are compared with the available experimental results. From the comparison, it can be concluded that the use of the authors plasticity-fracture model is in good agreement with the test results
    corecore