371 research outputs found

    SuperMeshing: a new deep learning architecture for increasing the mesh density of physical fields in metal forming numerical simulation

    Get PDF
    In stress field analysis, the finite element method is a crucial approach, in which the mesh-density has a significant impact on the results. High mesh density usually contributes authentic to simulation results but costs more computing resources. To eliminate this drawback, we propose a data-driven mesh-density boost model named SuperMeshingNet that uses low mesh-density as inputs, to acquire high-density stress field instantaneously, shortening computing time and cost automatically. Moreover, the Res-UNet architecture and attention mechanism are utilized, enhancing the performance of SuperMeshingNet. Compared with the baseline that applied the linear interpolation method, SuperMeshingNet achieves a prominent reduction in the mean squared error (MSE) and mean absolute error (MAE) on the test data. The well-trained model can successfully show more excellent performance than the baseline models on the multiple scaled mesh-density, including 2X, 4X, and 8X. Enhanced by SuperMeshingNet with broaden scaling of mesh density and high precision output, FEA can be accelerated with seldom computational time and cost

    Identification and support of autistic individuals within the UK Criminal Justice System: a practical approach based upon professional consensus with input from lived experience.

    Get PDF
    Background: Autism Spectrum Disorder (hereafter referred to as autism) is characterised by difficulties with (i) social communication, social interaction, and (ii) restricted and repetitive interests and behaviours. Estimates of autism prevalence within the criminal justice system (CJS) vary considerably, but there is evidence to suggest that the condition can be missed or misidentified within this population. Autism has implications for an individual’s journey through the CJS, from police questioning and engagement in court proceedings through to risk assessment, formulation, therapeutic approaches, engagement with support services, and long-term social and legal outcomes. Methods: This consensus based on professional opinion with input from lived experience aims to provide general principles for consideration by United Kingdom (UK) CJS personnel when working with autistic individuals, focusing on autistic offenders and those suspected of offences. Principles may be transferable to countries beyond the UK. Multidisciplinary professionals and two service users were approached for their input to address the effective identification and support strategies for autistic individuals within the CJS. Results: The authors provide a consensus statement including recommendations on the general principles of effective identification, and support strategies for autistic individuals across different levels of the CJS. Conclusion: Greater attention needs to be given to this population as they navigate the CJS

    Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    Get PDF
    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.ope

    Relationship Between Nutritional Habits and Hair Calcium Levels in Young Women

    Get PDF
    The present study was conducted to investigate whether hair calcium levels are related to nutritional habits, selected status parameters, and life-style factors in young women. Eighty-five healthy female students neither pregnant nor lactating, using no hair dyes or permanents were recruited for the study. Food consumption data, including fortified products and dietary supplements were collected with 4-day records. The calcium levels in hair and serum were analyzed by atomic absorption spectroscopy. Serum osteocalcin and the C-terminal telopeptide of type I collagen were assayed by ELISA. The women were divided into four groups according to their total vitamin D and calcium intakes and hair calcium levels. At adequate calcium intake and comparable serum bone biomarker levels, supplemental vitamin D increased the hair calcium levels. On the other hand, at lower than estimated adequate requirement of vitamin D intake the hair calcium levels were comparable in women with low calcium intakes but consuming high amounts of meat products or those whose diets were rich in dairy products, possibly due to homeostatic mechanisms. Elevated hair calcium was seen in 25% of subjects and could not be related to nutritional or life-style factors. The results show that the hair calcium levels were weakly related to the quality of diet, with some synergistic interactions between nutrients, especially vitamin D and magnesium

    Solution-processed blue/deep blue and white phosphorescent organic light emitting diodes (PhOLEDs) hosted by a polysiloxane derivative with pendant mCP (1, 3-bis(9-carbazolyl)benzene)

    Get PDF
    The synthesis and characterization is reported of an efficient polysiloxane derivative containing the 1,3-bis(9-carbazolyl)benzene (mCP) moiety as a pendant unit on the polysiloxane backbone. In comparison with mCP, the mCP-polysiloxane hybrid (PmCPSi) has significantly improved thermal and morphological stabilities with a high decomposition temperature (Td = 523 °C) and glass transition temperature (Tg = 194 °C). The silicon–oxygen linkage of PmCPSi prevents intermolecular π-stacking and ensures a high triplet energy level (ET = 3.0 eV). Using PmCPSi as a host, blue phosphorescent organic light emitting devices (PhOLEDs) effectively confine triplet excitons, with efficient energy transfer to the guest emitter and a relatively low turn-on voltage of 5.8 V. A maximum external quantum efficiency of 9.24% and maximum current efficiency of 18.93 cd/A are obtained. These values are higher than for directly analogous poly(vinylcarbazole) (PVK) based devices (6.76%, 12.29 cd/A). Good color stability over a range of operating voltages is observed. A two-component “warm-white” device with a maximum current efficiency of 10.4 cd/A is obtained using a blend of blue and orange phosphorescent emitters as dopants in PmCPSi host. These results demonstrate that well-designed polysiloxane derivatives are highly efficient hosts suitable for low-cost solution-processed PhOLEDs

    Inter- versus intramodal integration in sensorimotor synchronization: a combined behavioral and magnetoencephalographic study

    Get PDF
    Although the temporal occurrence of the pacing signal is predictable in sensorimotor synchronization tasks, normal subjects perform on-the-beat-tapping to an isochronous auditory metronome with an anticipatory error. This error originates from an intermodal task, that is, subjects have to bring information from the auditory and tactile modality to coincide. The aim of the present study was to illuminate whether the synchronization error is a finding specific to an intermodal timing task and whether the underlying cortical mechanisms are modality-specific or supramodal. We collected behavioral data and cortical evoked responses by magneto-encephalography (MEG) during performance of cross- and unimodal tapping-tasks. As expected, subjects showed negative asynchrony in performing an auditorily paced tapping task. However, no asynchrony emerged during tactile pacing, neither during pacing at the opposite finger nor at the toe. Analysis of cortical signals resulted in a three dipole model best explaining tap-contingent activity in all three conditions. The temporal behavior of the sources was similar between the conditions and, thus, modality independent. The localization of the two earlier activated sources was modality-independent as well whereas location of the third source varied with modality. In the auditory pacing condition it was localized in contralateral primary somatosensory cortex, during tactile pacing it was localized in contralateral posterior parietal cortex. In previous studies with auditory pacing the functional role of this third source was contradictory: A special temporal coupling pattern argued for involvement of the source in evaluating the temporal distance between tap and click whereas subsequent data gave no evidence for such an interpretation. Present data shed new light on this question by demonstrating differences between modalities in the localization of the third source with similar temporal behavior

    Integrin α5β1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation

    Get PDF
    During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis

    Angiotensin II Activates the Calcineurin/NFAT Signaling Pathway and Induces Cyclooxygenase-2 Expression in Rat Endometrial Stromal Cells

    Get PDF
    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca2+ concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca2+ signals is the activity of the Ca2+- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression -both mRNA and protein- was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression -both mRNA and protein- was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of non-pregnant but not of early-pregnant rats. These results might be related to differential roles that COX-2 plays in the endometrium
    corecore