77 research outputs found

    Hierarchical nanophase-separated structures created by precisely-designed polymers with complexity

    Get PDF
    AbstractThis review paper summarizes recent advances in self-assembly of complex polymers, focusing on three characteristic polymeric systems. The first is star-branched polymers of the ABC type, the second one consists of multiblock terpolymers with different chain lengths, while the third comprises supramacromolecular assembly systems with hydrogen and ionic bonding interactions between different polymer species. A quasicrystalline tiling structure with mesoscopic length scale has been found for the first star polymer system as well as the periodic Archimedean tiling structures, and moreover three-dimensional Zincblende network structure has been discovered. Furthermore the hierarchical structures having two length scales have been also found for the ABC star molecules whose chain length ratios, that is, A/B and/or A/C are larger than approximately five. Hierarchical structures with double periodicity have been observed for the hexablock and undecablock terpolymers and it has been revealed that their morphology changes systematically depending on composition of polymeric species. Poly(4-hydroxystyrene) (H) homopolymer was found to be dissolved into microdomain of poly(2-vinylpyridine) formed by poly(styrene-b-2-vinylpyridine) due to hydrogen bonding interaction, resulting in the origin of morphological transitions depending on the composition of H homopolymer added. Hierarchical structures possessing double periodicity have been found for poly(isoprene-b-2-vinylpyridine)/poly(styrene-b-4-hydroxystyrene) blends depending on both volume fractions of component polymers and blend ratio. Blends of different homopolymers with several complementary nucleotides or acid/base moieties on chain ends have been confirmed to show nanophase-separated structures as a result of successful formation of “supramacromolecules”

    Physiological Markers of Motor Improvement Following Five-month Sprint Training in Young Boys

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P4

    Isospin character of low-lying states in 56Fe.

    Get PDF
    Low-lying states in {sup 56}Fe, up to an excitation energy of about 4 MeV, have been investigated by means of inelastic proton and deuteron scattering experiments at {ital E}{sub {ital p}}=65 and 400 MeV and at {ital E}{sub {ital d}}=56 MeV, respectively. Measured cross sections and analyzing powers have been compared with coupled-channels calculations using collective form factors; calculations in both the Schr{umlt o}dinger and Dirac formalisms have been carried out for the proton data. For each probe, the matrix elements have been deduced for transitions from the ground state and from the 2{sub 1}{sup +} state to six quadrupole (2{sup +}) states to one octupole (3{sub 1}{sup {minus}}) and two hexadecapole (4{sub 1}{sup +} and 4{sub 2}{sup +}) states. The obtained matrix elements and the previous values from {gamma} decay or electron inelastic scattering have been used to evaluate the isospin character of the transitions. To discuss the quadrupole mixed-symmetry states in {sup 56}Fe, the deduced neutron ({ital M}{sub {ital n}}) and proton ({ital M}{sub {ital p}}) components of the matrix elements, or equivalently the isoscalar ({ital M}{sub {ital s}}) and isovector ({ital M}{sub {ital v}}) parts, have been compared with theoretical calculations based on the neutron-proton interacting bosonmore » model and on the shell model evaluated in a full {ital f}-{ital p} configuration space. {copyright} {ital 1996 The American Physical Society.}« les

    Design and Viscoelasticity Control of Supramolecular Soft Materials Bearing Noncovalent Cross-Links

    No full text

    Multifunctional sensing ability of a new Pt/Zn-based luminescent coordination polymer

    Get PDF
    We synthesized a new Pt/Zn-based coordination polymer, {Zn[Pt(CN)2(5,5'-dcbpy)]・4H2O}n, (5,5'-H2dcbpy = 5,5'-dicarboxy-2,2'-bipyridine), which exhibits reversible colour changes in response to temperature change or exposure to chemical vapours and liquids. Such chromic behaviour shows promise for sensing not only changes in temperature but also for detecting chemical solvents and vapours. The single crystal X-ray structure indicates that one-dimensional coordination polymeric chains formed by an alternating arrangement of [Zn(H2O)3]2+ and [Pt(CN)2(5,5'-dcbpy)]2- stacked to produce moderate metallophilic interactions between the Pt(II) ions. Thermogravimetric analysis and water vapour adsorption measurements show that both the crystal water and water coordinated to Zn(II) ions can be removed and re-adsorbed reversibly by heating or under vacuum. Emission spectra at various temperatures and/or in the presence of vapours or liquids reveal that the complex exhibits thermochromic and solvatochromic-like behaviours, with the emission band shifting between 616 and 671 nm. IR spectroscopy and powder X-ray diffraction measurements suggest that this multichromic behaviour is a result of the cooperative phenomena of water adsorption/desorption around the Zn(II) ions and the modification of the metallophilic interaction

    Vapour-adsorption and chromic behaviours of luminescent coordination polymers composed of a Pt(II)-diimine metalloligand and alkaline-earth metal ions

    Get PDF
    Four new bimetallic coordination polymers (CPs), {M[Pt(CN)2(5,5'-dcbpy)]・4H2O}n(M = Mg^[2+], Ca^[2+], Sr^[2+], Ba^[2+]; 5,5'-H2dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) were synthesized using four alkaline-earth metal ions and a Pt(II)-diimine metalloligand [Pt(CN)2(5,5'-H2dcbpy)]. All four CPs are isomorphous with the Zn complex, {Zn[Pt(CN)2(5,5'-dcbpy)]・4H2O}n, which exhibits effective metallophilic interactions between Pt(II) ions. These CPs exhibited colourful thermochromic behaviour and solid-state solvatochromic-like behaviours when suspended in various solvents. Thermogravimetric analysis and vapour-adsorption measurements revealed that the CPs can reversibly adsorb water and MeOH vapours. The emission energy of the triplet metal-metal-to-ligand charge-transfer (3MMLCT) state varied markedly upon guest adsorption/desorption. The chromic and vapour-adsorption properties of these CPs depend strongly on the cross-linking M^[2+] ions
    corecore