5 research outputs found

    Long-term unsupervised mobility assessment in movement disorders

    Get PDF
    Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical assessments, as they capture fluctuating and rare events. These data could support clinical decision making and could also serve as outcomes in clinical trials. However, studies that directly compared assessments made in unsupervised and supervised (eg, in the laboratory or hospital) settings point to large disparities, even in the same parameters of mobility. These differences appear to be affected by psychological, physiological, cognitive, environmental, and technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider these disparities and the multiple factors that contribute to them

    Toward a remote assessment of walking bout and speed: application in patients with multiple sclerosis

    No full text
    Gait speed as a powerful biomarker of mobility is mostly assessed in controlled environments, e.g. in the clinic. With wearable inertial sensors, gait speed can be estimated in an objective manner. However, most of the previous works have validated the gait speed estimation algorithms in clinical settings which can be different than the home assessments in which the patients demonstrate their actual performance. Moreover, to provide comfort for the users, devising an algorithm based on a single sensor setup is essential. To this end, the goal of this study was to develop and validate a new gait speed estimation method based on a machine learning approach to predict gait speed in both clinical and home assessments by a sensor on the lower back. Moreover, two methods were introduced to detect walking bouts during daily activities at home. We have validated the algorithms in 35 patients with multiple sclerosis as it often presents with mobility difficulties. Therefore, the robustness of the algorithm can be shown in an impaired or slow gait. Against silver standard multi-sensor references, we achieved a bias close to zero and a precision of 0.15 m/s for gait speed estimation. Furthermore, the proposed machine learning-based locomotion detection method had a median of 96.8% specificity, 93.0% sensitivity, 96.4% accuracy, and 78.6% F1-score in detecting walking bouts at home. The high performance of the proposed algorithm showed the feasibility of the unsupervised mobility assessment introduced in this study

    Postural transitions detection and characterization in healthy and patient populations using a single waist sensor

    No full text
    Background: Sit-to-stand and stand-to-sit transitions are frequent daily functional tasks indicative of muscle power and balance performance. Monitoring these postural transitions with inertial sensors provides an objective tool to assess mobility in both the laboratory and home environment. While the measurement depends on the sensor location, the clinical and everyday use requires high compliance and subject adherence. The objective of this study was to propose a sit-to-stand and stand-to-sit transition detection algorithm that works independently of the sensor location. Methods: For a location-independent algorithm, the vertical acceleration of the lower back in the global frame was used to detect the postural transitions in daily activities. The detection performance of the algorithm was validated against video observations. To investigate the effect of the location on the kinematic parameters, these parameters were extracted during a five-time sit-to-stand test and were compared for different locations of the sensor on the trunk and lower back. Results The proposed detection method demonstrates high accuracy in different populations with a mean positive predictive value (and mean sensitivity) of 98% (95%) for healthy individuals and 89% (89%) for participants with diseases. Conclusions: The sensor location around the waist did not affect the performance of the algorithm in detecting the sit-to-stand and stand-to-sit transitions. However, regarding the accuracy of the kinematic parameters, the sensors located on the sternum and L5 vertebrae demonstrated the highest reliability

    Gait speed in clinical and daily living assessments in Parkinson’s disease patients: performance versus capacity

    No full text
    Gait speed often referred as the sixth vital sign is the most powerful biomarker of mobility. While a clinical setting allows the estimation of gait speed under controlled conditions that present functional capacity, gait speed in real-life conditions provides the actual performance of the patient. The goal of this study was to investigate objectively under what conditions during daily activities, patients perform as well as or better than in the clinic. To this end, we recruited 27 Parkinson’s disease (PD) patients and measured their gait speed by inertial measurement units through several walking tests in the clinic as well as their daily activities at home. By fitting a bimodal Gaussian model to their gait speed distribution, we found that on average, patients had similar modes in the clinic and during daily activities. Furthermore, we observed that the number of medication doses taken throughout the day had a moderate correlation with the difference between clinic and home. Performing a cycle-by-cycle analysis on gait speed during the home assessment, overall only about 3% of the strides had equal or greater gait speeds than the patients’ capacity in the clinic. These strides were during long walking bouts (>1 min) and happened before noon, around 26 min after medication intake, reaching their maximum occurrence probability 3 h after Levodopa intake. These results open the possibility of better control of medication intake in PD by considering both functional capacity and continuous monitoring of gait speed during real-life conditions
    corecore