83 research outputs found

    Oral administration of dextran sodium sulphate induces a caecum-localized colitis in rabbits

    Full text link
    Trichuris suis ova (TSO) have shown promising results in the treatment of inflammatory bowel disease (IBD) but the mechanisms which underlies this therapeutic effect cannot be studied in mice and rats as T. suis fails to colonize the rodent intestine, whilst hatching in humans and rabbits. As a suitable rabbit IBD model is currently not available, we developed a rabbit colitis model by administration of dextran sodium sulphate (DSS). White Himalayan rabbits (n = 12) received 0.1% DSS in the daily water supply for five days. Clinical symptoms were monitored daily, and rabbits were sacrificed at different time points. A genomewide expression analysis was performed with RNA isolated from caecal lamina propria mononuclear cells (LPMC) and intestinal epithelial cells (IEC). The disease activity index of DSS rabbits increased up to 2.1 ± 0.4 (n = 6) at day 10 (controls <0.5). DSS induced a caecum-localized pathology with crypt architectural distortion, stunted villous surface and inflammatory infiltrate in the lamina propria. The histopathology score reached a peak of 14.2 ± 4.9 (n = 4) at day 10 (controls 7.7 ± 0.9, n = 5). Expression profiling revealed an enrichment of IBD-related genes in both LPMC and IEC. Innate inflammatory response, Th17 signalling and chemotaxis were among the pathways affected significantly. We describe a reproducible and reliable rabbit model of DSS colitis. Localization of the inflammation in the caecum and its similarities to IBD make this model particularly suitable to study TSO therapy in vivo

    Spermidine ameliorates colitis via induction of anti-inflammatory macrophages and prevention of intestinal dysbiosis

    Get PDF
    BACKGROUND AND AIMS: Exacerbated immune activation, intestinal dysbiosis, and a disrupted intestinal barrier are common features among inflammatory bowel disease (IBD) patients. The polyamine spermidine, which is naturally present in all living organisms, is an integral component of the human diet, and exerts beneficial effects in human diseases. Here, we investigated whether spermidine treatment ameliorates intestinal inflammation and offers therapeutic potential for IBD treatment. METHODS: We assessed the effect of oral spermidine administration on colitis severity in the T cell transfer colitis model in Rag2 -/- mice by analysis of endoscopy, histology, and molecular inflammation markers. The effects on the intestinal microbiome were determined by 16S sequencing of mouse feces. The impact on intestinal barrier integrity was evaluated in co-cultures of patient-derived macrophages with intestinal epithelial cells. RESULTS: Spermidine administration protected mice from intestinal inflammation in a dose-dependent manner. While T helper cell subsets remained unaffected, spermidine promoted anti-inflammatory macrophages and prevented the microbiome shift from Firmicutes and Bacteroides to Proteobacteria, maintaining a healthy gut microbiome. Consistent with spermidine as a potent activator of the anti-inflammatory molecule protein tyrosine phosphatase non-receptor type 2 (PTPN2), its colitis-protective effect was dependent on PTPN2 in intestinal epithelial cells and in myeloid cells. The loss of PTPN2 in epithelial and myeloid cells, but not in T cells, abrogated the barrier-protective, anti-inflammatory effect of spermidine and prevented the anti-inflammatory polarization of macrophages. CONCLUSION: Spermidine reduces intestinal inflammation by promoting anti-inflammatory macrophages, maintaining a healthy microbiome, and preserving epithelial barrier integrity in a PTPN2-dependent manner

    Glycoprotein (GP)96 is essential for maintaining intestinal epithelial architecture by supporting its self-renewal capacity

    Full text link
    BACKGROUND & AIMS Glycoprotein (GP)96 is an endoplasmic reticulum (ER)-resident master chaperone for cell surface receptors including the Wnt co-receptors LRP5/6. Intestinal epithelial cells (IEC)-specific deletion of Gp96 is embryonically lethal. However, the role of GP96 in adult intestinal tissue and especially within the intestinal stem cell (ISC) niche has not been studied so far. Here, we investigated how GP96-loss interferes with intestinal homeostasis by compromising viability, proliferation and differentiation of IEC. METHODS Tamoxifen was used to induce Cre-mediated deletion of Gp96 in GP96-VillincreERT2^{creERT2} mice and intestinal organoids. With H&E- and immunofluorescence staining we assessed alterations in intestinal morphology and the presence and localization of IEC-types. Real-time PCR and Western blot analysis were performed to explore the molecular mechanisms underlying the severe phenotype of Gp96 KO mice and organoids. RESULTS IEC-specific deletion of Gp96 in adult mice resulted in a rapid degeneration of the stem cell niche, followed by a complete eradication of the epithelial layer and death within few days. These effects were due to severe defects in ISC renewal and premature ISC differentiation, which resulted from defective Wnt and Notch signaling. Furthermore, depletion of GP96 led to massive induction of ER stress. While effects on ISC renewal and adequate differentiation were partly reversed upon activation of Wnt/Notch signaling, viability could not be restored, indicating that reduced viability was mediated by other mechanisms. CONCLUSIONS Our work demonstrates that GP96 plays a fundamental role in regulating ISC fate and epithelial regeneration and is therefore indispensable for maintaining intestinal epithelial homeostasis

    Mutant HRAS as novel target for MEK and mTOR inhibitors

    Full text link
    HRAS is a frequently mutated oncogene in cancer. However, mutant HRAS as drug target has not been investigated so far. Here, we show that mutant HRAS hyperactivates the RAS and the mTOR pathway in various cancer cell lines including lung, bladder and esophageal cancer. HRAS mutation sensitized toward growth inhibition by the MEK inhibitors AZD6244, MEK162 and PD0325901. Further, we found that MEK inhibitors induce apoptosis in mutant HRAS cell lines but not in cell lines lacking RAS mutations. In addition, knockdown of HRAS by siRNA blocked cell growth in mutant HRAS cell lines. Inhibition of the PI3K pathway alone or in combination with MEK inhibitors did not alter signaling nor had an impact on viability. However, inhibition of mTOR or combined inhibition of MEK and mTOR reduced cell growth in a synergistic manner. Finally, Ba/F3 cells transformed with mutant HRAS isoforms Q61L, Q61R and G12V demonstrated equal sensitivity towards MEK and mTOR inhibition. Our results show that HRAS mutations in cancer activate the RAS and mTOR pathways which might serve as a therapeutic option for patients with HRAS mutant tumors

    Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer

    Full text link
    BACKGROUND Integrin αvβ6 is a heterodimeric cell surface protein whose cellular expression is determined by the availability of the integrin β6 subunit (ITGB6). It is expressed at very low levels in most organs during tissue homeostasis but shows highly upregulated expression during the process of tumorigenesis in many cancers of epithelial origin. Notably, enhanced expression of integrin αvβ6 is associated with aggressive disease and poor prognosis in numerous carcinoma entities. Integrin αvβ6 is one of the major physiological activators of transforming growth factor-β (TGF-β), which has been shown to inhibit the antitumor T-cell response and cause resistance to immunotherapy in mouse models of colorectal and mammary cancer. In this study, we investigated the effect of ITGB6 expression and antibody-mediated integrin αvβ6 inhibition on the tumor immune response in colorectal cancer. METHODS Using orthotopic and heterotopic tumor cell injection, we assessed the effect of ITGB6 on tumor growth and tumor immune response in wild type mice, mice with defective TGF-β signaling, and mice treated with anti-integrin αvβ6 antibodies. To examine the effect of ITGB6 in human colorectal cancer, we analyzed RNAseq data from the colon adenocarcinoma dataset of The Cancer Genome Atlas (TCGA-COAD). RESULTS We demonstrate that expression of ITGB6 is an immune evasion strategy in colorectal cancer, causing inhibition of the antitumor immune response and resistance to immune checkpoint blockade therapy by activating latent TGF-β. Antibody-mediated inhibition of integrin αvβ6 sparked a potent cytotoxic T-cell response and overcame resistance to programmed cell death protein 1 (PD-1) blockade therapy in ITGB6 expressing tumors, provoking a drastic increase in anti-PD-1 treatment efficacy. Further, we show that the majority of tumors in patients with colorectal cancer express sufficient ITGB6 to provoke inhibition of the cytotoxic T-cell response, indicating that most patients could benefit from integrin αvβ6 blockade therapy. CONCLUSIONS These findings propose inhibition of integrin αvβ6 as a promising new therapy for colorectal cancer, which blocks tumor-promoting TGF-β activation, prevents tumor exclusion of cytotoxic T-cells and enhances the efficacy of immune checkpoint blockade therapy

    Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    Full text link
    OBJECTIVE: Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. DESIGN: Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. RESULTS: Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. CONCLUSION: These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles

    Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer

    Get PDF
    BackgroundIntegrin αvβ6 is a heterodimeric cell surface protein whose cellular expression is determined by the availability of the integrin β6 subunit (ITGB6). It is expressed at very low levels in most organs during tissue homeostasis but shows highly upregulated expression during the process of tumorigenesis in many cancers of epithelial origin. Notably, enhanced expression of integrin αvβ6 is associated with aggressive disease and poor prognosis in numerous carcinoma entities. Integrin αvβ6 is one of the major physiological activators of transforming growth factor-β (TGF-β), which has been shown to inhibit the antitumor T-cell response and cause resistance to immunotherapy in mouse models of colorectal and mammary cancer. In this study, we investigated the effect of ITGB6 expression and antibody-mediated integrin αvβ6 inhibition on the tumor immune response in colorectal cancer.MethodsUsing orthotopic and heterotopic tumor cell injection, we assessed the effect of ITGB6 on tumor growth and tumor immune response in wild type mice, mice with defective TGF-β signaling, and mice treated with anti-integrin αvβ6 antibodies. To examine the effect of ITGB6 in human colorectal cancer, we analyzed RNAseq data from the colon adenocarcinoma dataset of The Cancer Genome Atlas (TCGA-COAD).ResultsWe demonstrate that expression of ITGB6 is an immune evasion strategy in colorectal cancer, causing inhibition of the antitumor immune response and resistance to immune checkpoint blockade therapy by activating latent TGF-β. Antibody-mediated inhibition of integrin αvβ6 sparked a potent cytotoxic T-cell response and overcame resistance to programmed cell death protein 1 (PD-1) blockade therapy in ITGB6 expressing tumors, provoking a drastic increase in anti-PD-1 treatment efficacy. Further, we show that the majority of tumors in patients with colorectal cancer express sufficient ITGB6 to provoke inhibition of the cytotoxic T-cell response, indicating that most patients could benefit from integrin αvβ6 blockade therapy.ConclusionsThese findings propose inhibition of integrin αvβ6 as a promising new therapy for colorectal cancer, which blocks tumor-promoting TGF-β activation, prevents tumor exclusion of cytotoxic T-cells and enhances the efficacy of immune checkpoint blockade therapy

    Protein tyrosine phosphatase non-receptor type 2 controls colorectal cancer development

    Full text link
    Protein tyrosine phosphatase non-receptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC) as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. Particularly, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T-cells and increased PTPN2 levels negatively correlated with PD1, CTLA4, STAT1 and granzyme A. In vivo, T-cell and dendritic cell-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T-cells, as well as CD8+ T-cell infiltration and cytotoxicity into the tumor. In direct relevance to CRC treatment, T-cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced anti-tumor memory formation upon tumor re-challenge in vivo. Our data suggest a role for PTPN2 in suppressing anti-tumor immunity and promoting tumor development in CRC patients. Our in vivo results uncover PTPN2 as a key player in controlling immunogenicity of CRC, with the strong potential to be exploited to promote cancer immunotherapy

    Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis

    Get PDF
    Non-alcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein Barr virus induced G protein coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in livers of NASH patients by liquid chromatography-mass spectrometry and tested the role of the EBI2-7α,25-diHC-system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared to controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype related differences were observed in Ebi2-/- animals and animals with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared to wildtype littermate controls,arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by enhanced level of 7α- hydroxycholest-4-en-3-one, and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH
    corecore